Vendorize uClock #10
@ -14,10 +14,9 @@ Common directory locations:
|
||||
|
||||
## Required Third-party Libraries
|
||||
|
||||
* [uClock](https://github.com/midilab/uClock) [MIT] - Handle clock tempo, external clock input, and internal clock timer handler.
|
||||
* [uClock](https://github.com/midilab/uClock) [MIT] - (Included with this repo) Handle clock tempo, external clock input, and internal clock timer handler.
|
||||
* [RotateEncoder](https://github.com/mathertel/RotaryEncoder) [BSD] - Library for reading and interpreting encoder rotation.
|
||||
* [Adafruit_GFX](https://github.com/adafruit/Adafruit-GFX-Library) [BSD] - Graphics helper library.
|
||||
* [Adafruit_SSD1306](https://github.com/adafruit/Adafruit_SSD1306) [BSD] - Library for interacting with the SSD1306 OLED display.
|
||||
* [U8g2](https://github.com/olikraus/u8g2/) [MIT] - Graphics helper library.
|
||||
|
||||
## Example
|
||||
|
||||
|
||||
17
clock.h
17
clock.h
@ -13,9 +13,9 @@
|
||||
#define CLOCK_H
|
||||
|
||||
#include <NeoHWSerial.h>
|
||||
#include <uClock.h>
|
||||
|
||||
#include "peripherials.h"
|
||||
#include "uClock.h"
|
||||
|
||||
// MIDI clock, start, stop, and continue byte definitions - based on MIDI 1.0 Standards.
|
||||
#define MIDI_CLOCK 0xF8
|
||||
@ -39,6 +39,14 @@ class Clock {
|
||||
SOURCE_LAST,
|
||||
};
|
||||
|
||||
enum Pulse {
|
||||
PULSE_NONE,
|
||||
PULSE_PPQN_1,
|
||||
PULSE_PPQN_4,
|
||||
PULSE_PPQN_24,
|
||||
PULSE_LAST,
|
||||
};
|
||||
|
||||
void Init() {
|
||||
NeoSerial.begin(31250);
|
||||
|
||||
@ -55,7 +63,6 @@ class Clock {
|
||||
uClock.setOnClockStart(sendMIDIStart);
|
||||
uClock.setOnClockStop(sendMIDIStop);
|
||||
uClock.setOnSync24(sendMIDIClock);
|
||||
uClock.setOnSync48(sendPulseOut);
|
||||
|
||||
uClock.start();
|
||||
}
|
||||
@ -75,7 +82,7 @@ class Clock {
|
||||
void SetSource(Source source) {
|
||||
bool was_playing = !IsPaused();
|
||||
uClock.stop();
|
||||
// If source is currently MIDI, disable the serial interrupt handler.
|
||||
// If we are changing the source from MIDI, disable the serial interrupt handler.
|
||||
if (source_ == SOURCE_EXTERNAL_MIDI) {
|
||||
NeoSerial.attachInterrupt(serialEventNoop);
|
||||
}
|
||||
@ -175,10 +182,6 @@ class Clock {
|
||||
static void sendMIDIClock(uint32_t tick) {
|
||||
NeoSerial.write(MIDI_CLOCK);
|
||||
}
|
||||
|
||||
static void sendPulseOut(uint32_t tick) {
|
||||
digitalWrite(PULSE_OUT_PIN, !digitalRead(PULSE_OUT_PIN));
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
@ -101,6 +101,32 @@ void HandleIntClockTick(uint32_t tick) {
|
||||
}
|
||||
}
|
||||
|
||||
// Pulse Out gate
|
||||
if (app.selected_pulse != Clock::PULSE_NONE) {
|
||||
int clock_index;
|
||||
switch (app.selected_pulse) {
|
||||
case Clock::PULSE_PPQN_24:
|
||||
clock_index = 0;
|
||||
break;
|
||||
case Clock::PULSE_PPQN_4:
|
||||
clock_index = 4;
|
||||
break;
|
||||
case Clock::PULSE_PPQN_1:
|
||||
clock_index = 7;
|
||||
break;
|
||||
}
|
||||
|
||||
const uint16_t pulse_high_ticks = clock_mod_pulses[clock_index];
|
||||
const uint32_t pulse_low_ticks = tick + max((long)(pulse_high_ticks / 2), 1L);
|
||||
|
||||
if (tick % pulse_high_ticks == 0) {
|
||||
gravity.pulse.High();
|
||||
}
|
||||
if (pulse_low_ticks % pulse_high_ticks == 0) {
|
||||
gravity.pulse.Low();
|
||||
}
|
||||
}
|
||||
|
||||
if (!app.editing_param) {
|
||||
app.refresh_screen |= refresh;
|
||||
}
|
||||
@ -197,6 +223,13 @@ void editMainParameter(int val) {
|
||||
gravity.clock.SetSource(app.selected_source);
|
||||
break;
|
||||
}
|
||||
case PARAM_MAIN_PULSE:
|
||||
byte pulse = static_cast<int>(app.selected_pulse);
|
||||
updateSelection(pulse, val, Clock::PULSE_LAST);
|
||||
app.selected_pulse = static_cast<Clock::Pulse>(pulse);
|
||||
if (app.selected_pulse == Clock::PULSE_NONE) {
|
||||
gravity.pulse.Low();
|
||||
}
|
||||
case PARAM_MAIN_ENCODER_DIR:
|
||||
updateSelection(app.selected_sub_param, val, 2);
|
||||
break;
|
||||
|
||||
@ -16,6 +16,7 @@ struct AppState {
|
||||
byte selected_channel = 0; // 0=tempo, 1-6=output channel
|
||||
byte selected_shuffle = 0;
|
||||
Clock::Source selected_source = Clock::SOURCE_INTERNAL;
|
||||
Clock::Pulse selected_pulse = Clock::PULSE_PPQN_24;
|
||||
Channel channel[Gravity::OUTPUT_COUNT];
|
||||
};
|
||||
|
||||
@ -28,6 +29,7 @@ static Channel& GetSelectedChannel() {
|
||||
enum ParamsMainPage {
|
||||
PARAM_MAIN_TEMPO,
|
||||
PARAM_MAIN_SOURCE,
|
||||
PARAM_MAIN_PULSE,
|
||||
PARAM_MAIN_ENCODER_DIR,
|
||||
PARAM_MAIN_RESET_STATE,
|
||||
PARAM_MAIN_LAST,
|
||||
|
||||
@ -3,6 +3,7 @@
|
||||
|
||||
#include <Arduino.h>
|
||||
#include <gravity.h>
|
||||
|
||||
#include "euclidean.h"
|
||||
|
||||
// Enums for CV configuration
|
||||
@ -66,7 +67,7 @@ class Channel {
|
||||
}
|
||||
}
|
||||
|
||||
void setProbability(int prob) {
|
||||
void setProbability(int prob) {
|
||||
base_probability = constrain(prob, 0, 100);
|
||||
if (!isCvModActive()) {
|
||||
cvmod_probability = base_probability;
|
||||
@ -74,20 +75,20 @@ class Channel {
|
||||
}
|
||||
|
||||
void setDutyCycle(int duty) {
|
||||
base_duty_cycle = constrain(duty, 1, 99);
|
||||
base_duty_cycle = constrain(duty, 1, 99);
|
||||
if (!isCvModActive()) {
|
||||
cvmod_duty_cycle = base_duty_cycle;
|
||||
}
|
||||
}
|
||||
|
||||
void setOffset(int off) {
|
||||
void setOffset(int off) {
|
||||
base_offset = constrain(off, 0, 99);
|
||||
if (!isCvModActive()) {
|
||||
cvmod_offset = base_offset;
|
||||
}
|
||||
}
|
||||
void setSwing(int val) {
|
||||
base_swing = constrain(val, 50, 95);
|
||||
base_swing = constrain(val, 50, 95);
|
||||
if (!isCvModActive()) {
|
||||
cvmod_swing = base_swing;
|
||||
}
|
||||
@ -141,12 +142,12 @@ class Channel {
|
||||
bool hit = cvmod_probability >= random(0, 100);
|
||||
// Euclidean rhythm check
|
||||
switch (pattern.NextStep()) {
|
||||
case Pattern::REST: // Rest when active or fall back to probability
|
||||
hit = false;
|
||||
break;
|
||||
case Pattern::HIT: // Hit if probability is true
|
||||
hit &= true;
|
||||
break;
|
||||
case Pattern::REST: // Rest when active or fall back to probability
|
||||
hit = false;
|
||||
break;
|
||||
case Pattern::HIT: // Hit if probability is true
|
||||
hit &= true;
|
||||
break;
|
||||
}
|
||||
if (hit) {
|
||||
output.High();
|
||||
@ -192,11 +193,11 @@ class Channel {
|
||||
(cv_destination == CV_DEST_SWING)
|
||||
? constrain(base_swing + map(value, -512, 512, -25, 25), 50, 95)
|
||||
: base_swing;
|
||||
|
||||
|
||||
if (cv_destination == CV_DEST_EUC_STEPS) {
|
||||
pattern.SetSteps(map(value, -512, 512, 0, MAX_PATTERN_LEN));
|
||||
}
|
||||
|
||||
|
||||
if (cv_destination == CV_DEST_EUC_HITS) {
|
||||
pattern.SetHits(map(value, -512, 512, 0, pattern.GetSteps()));
|
||||
}
|
||||
|
||||
@ -68,16 +68,16 @@ static const unsigned char pause_icon[28] PROGMEM = {
|
||||
0x38, 0x0E, 0x00, 0x00};
|
||||
|
||||
// Constants for screen layout and fonts
|
||||
constexpr int SCREEN_CENTER_X = 32;
|
||||
constexpr int MAIN_TEXT_Y = 26;
|
||||
constexpr int SUB_TEXT_Y = 40;
|
||||
constexpr int VISIBLE_MENU_ITEMS = 3;
|
||||
constexpr int MENU_ITEM_HEIGHT = 14;
|
||||
constexpr int MENU_BOX_PADDING = 4;
|
||||
constexpr int MENU_BOX_WIDTH = 64;
|
||||
constexpr int CHANNEL_BOXES_Y = 50;
|
||||
constexpr int CHANNEL_BOX_WIDTH = 18;
|
||||
constexpr int CHANNEL_BOX_HEIGHT = 14;
|
||||
constexpr uint8_t SCREEN_CENTER_X = 32;
|
||||
constexpr uint8_t MAIN_TEXT_Y = 26;
|
||||
constexpr uint8_t SUB_TEXT_Y = 40;
|
||||
constexpr uint8_t VISIBLE_MENU_ITEMS = 3;
|
||||
constexpr uint8_t MENU_ITEM_HEIGHT = 14;
|
||||
constexpr uint8_t MENU_BOX_PADDING = 4;
|
||||
constexpr uint8_t MENU_BOX_WIDTH = 64;
|
||||
constexpr uint8_t CHANNEL_BOXES_Y = 50;
|
||||
constexpr uint8_t CHANNEL_BOX_WIDTH = 18;
|
||||
constexpr uint8_t CHANNEL_BOX_HEIGHT = 14;
|
||||
|
||||
// Helper function to draw centered text
|
||||
void drawCenteredText(const char* text, int y, const uint8_t* font) {
|
||||
@ -204,6 +204,23 @@ void DisplayMainPage() {
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case PARAM_MAIN_PULSE:
|
||||
mainText = F("OUT");
|
||||
switch (app.selected_pulse) {
|
||||
case Clock::PULSE_NONE:
|
||||
subText = F("PULSE OFF");
|
||||
break;
|
||||
case Clock::PULSE_PPQN_24:
|
||||
subText = F("24 PPQN PULSE");
|
||||
break;
|
||||
case Clock::PULSE_PPQN_4:
|
||||
subText = F("4 PPQN PULSE");
|
||||
break;
|
||||
case Clock::PULSE_PPQN_1:
|
||||
subText = F("1 PPQN PULSE");
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case PARAM_MAIN_ENCODER_DIR:
|
||||
mainText = F("DIR");
|
||||
subText = app.selected_sub_param == 0 ? F("DEFAULT") : F("REVERSED");
|
||||
@ -218,7 +235,7 @@ void DisplayMainPage() {
|
||||
drawCenteredText(subText.c_str(), SUB_TEXT_Y, TEXT_FONT);
|
||||
|
||||
// Draw Main Page menu items
|
||||
String menu_items[PARAM_MAIN_LAST] = {F("TEMPO"), F("SOURCE"), F("ENCODER DIR"), F("RESET")};
|
||||
String menu_items[PARAM_MAIN_LAST] = {F("TEMPO"), F("SOURCE"), F("PULSE OUT"), F("ENCODER DIR"), F("RESET")};
|
||||
drawMenuItems(menu_items, PARAM_MAIN_LAST);
|
||||
}
|
||||
|
||||
@ -329,7 +346,7 @@ void DisplayChannelPage() {
|
||||
|
||||
// Draw Channel Page menu items
|
||||
String menu_items[PARAM_CH_LAST] = {
|
||||
F("MOD"), F("PROBABILITY"), F("DUTY"), F("OFFSET"), F("SWING"), F("EUCLID STEPS"),
|
||||
F("MOD"), F("PROBABILITY"), F("DUTY"), F("OFFSET"), F("SWING"), F("EUCLID STEPS"),
|
||||
F("EUCLID HITS"), F("CV SOURCE"), F("CV DEST")};
|
||||
drawMenuItems(menu_items, PARAM_CH_LAST);
|
||||
}
|
||||
|
||||
@ -17,6 +17,7 @@ bool StateManager::initialize(AppState& app) {
|
||||
app.selected_param = load_data.selected_param;
|
||||
app.selected_channel = load_data.selected_channel;
|
||||
app.selected_source = static_cast<Clock::Source>(load_data.selected_source);
|
||||
app.selected_pulse = static_cast<Clock::Pulse>(load_data.selected_pulse);
|
||||
|
||||
// Loop through and restore each channel's state.
|
||||
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
|
||||
@ -54,6 +55,7 @@ void StateManager::reset(AppState& app) {
|
||||
app.selected_param = 0;
|
||||
app.selected_channel = 0;
|
||||
app.selected_source = Clock::SOURCE_INTERNAL;
|
||||
app.selected_pulse = Clock::PULSE_PPQN_24;
|
||||
|
||||
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
|
||||
app.channel[i].Init();
|
||||
@ -61,7 +63,7 @@ void StateManager::reset(AppState& app) {
|
||||
|
||||
noInterrupts();
|
||||
_saveMetadata(); // Write the new metadata
|
||||
_saveState(app); // Write the new (default) app state
|
||||
_saveState(app); // Write the new (default) app state
|
||||
interrupts();
|
||||
|
||||
_isDirty = false;
|
||||
@ -97,6 +99,7 @@ void StateManager::_saveState(const AppState& app) {
|
||||
save_data.selected_param = app.selected_param;
|
||||
save_data.selected_channel = app.selected_channel;
|
||||
save_data.selected_source = static_cast<byte>(app.selected_source);
|
||||
save_data.selected_pulse = static_cast<byte>(app.selected_pulse);
|
||||
|
||||
// Loop through and populate each channel's state
|
||||
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
|
||||
|
||||
@ -54,6 +54,7 @@ class StateManager {
|
||||
byte selected_param;
|
||||
byte selected_channel;
|
||||
byte selected_source;
|
||||
byte selected_pulse;
|
||||
ChannelState channel_data[Gravity::OUTPUT_COUNT];
|
||||
};
|
||||
|
||||
|
||||
@ -12,7 +12,7 @@
|
||||
#include "gravity.h"
|
||||
|
||||
// Initialize the static pointer for the EncoderDir class to null. We want to
|
||||
// have a static pointer to decouple the ISR from the global gravity object.
|
||||
// have a static pointer to decouple the ISR from the global gravity object.
|
||||
Encoder* Encoder::_instance = nullptr;
|
||||
|
||||
void Gravity::Init() {
|
||||
@ -52,6 +52,8 @@ void Gravity::initOutputs() {
|
||||
outputs[3].Init(OUT_CH4);
|
||||
outputs[4].Init(OUT_CH5);
|
||||
outputs[5].Init(OUT_CH6);
|
||||
// Expansion Pulse Output
|
||||
pulse.Init(PULSE_OUT_PIN);
|
||||
}
|
||||
void Gravity::initDisplay() {
|
||||
// OLED Display configuration.
|
||||
|
||||
@ -32,7 +32,8 @@ class Gravity {
|
||||
U8G2_SSD1306_128X64_NONAME_1_HW_I2C display; // OLED display object.
|
||||
Clock clock; // Clock source wrapper.
|
||||
DigitalOutput outputs[OUTPUT_COUNT]; // An array containing each Output object.
|
||||
Encoder encoder; // Rotary encoder with button instance
|
||||
DigitalOutput pulse; // MIDI Expander module pulse output.
|
||||
Encoder encoder; // Rotary encoder with button instance
|
||||
Button shift_button;
|
||||
Button play_button;
|
||||
AnalogInput cv1;
|
||||
|
||||
409
uClock.cpp
Executable file
409
uClock.cpp
Executable file
@ -0,0 +1,409 @@
|
||||
/*!
|
||||
* @file uClock.cpp
|
||||
* Project BPM clock generator for Arduino
|
||||
* @brief A Library to implement BPM clock tick calls using hardware interruption. Supported and tested on AVR boards(ATmega168/328, ATmega16u4/32u4 and ATmega2560) and ARM boards(RPI2040, Teensy, Seedstudio XIAO M0 and ESP32)
|
||||
* @version 2.2.1
|
||||
* @author Romulo Silva
|
||||
* @date 10/06/2017
|
||||
* @license MIT - (c) 2024 - Romulo Silva - contact@midilab.co
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included
|
||||
* in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
#include "uClock.h"
|
||||
#include "uClock/platforms/avr.h"
|
||||
|
||||
//
|
||||
// Platform specific timer setup/control
|
||||
//
|
||||
// initTimer(uint32_t us_interval) and setTimer(uint32_t us_interval)
|
||||
// are called from architecture specific module included at the
|
||||
// header of this file
|
||||
void uclockInitTimer()
|
||||
{
|
||||
// begin at 120bpm
|
||||
initTimer(uClock.bpmToMicroSeconds(120.00));
|
||||
}
|
||||
|
||||
void setTimerTempo(float bpm)
|
||||
{
|
||||
setTimer(uClock.bpmToMicroSeconds(bpm));
|
||||
}
|
||||
|
||||
namespace umodular { namespace clock {
|
||||
|
||||
static inline uint32_t phase_mult(uint32_t val)
|
||||
{
|
||||
return (val * PHASE_FACTOR) >> 8;
|
||||
}
|
||||
|
||||
static inline uint32_t clock_diff(uint32_t old_clock, uint32_t new_clock)
|
||||
{
|
||||
if (new_clock >= old_clock) {
|
||||
return new_clock - old_clock;
|
||||
} else {
|
||||
return new_clock + (4294967295 - old_clock);
|
||||
}
|
||||
}
|
||||
|
||||
uClockClass::uClockClass()
|
||||
{
|
||||
tempo = 120;
|
||||
start_timer = 0;
|
||||
last_interval = 0;
|
||||
sync_interval = 0;
|
||||
clock_state = PAUSED;
|
||||
clock_mode = INTERNAL_CLOCK;
|
||||
resetCounters();
|
||||
|
||||
onOutputPPQNCallback = nullptr;
|
||||
onSync24Callback = nullptr;
|
||||
onClockStartCallback = nullptr;
|
||||
onClockStopCallback = nullptr;
|
||||
// initialize reference data
|
||||
calculateReferencedata();
|
||||
}
|
||||
|
||||
void uClockClass::init()
|
||||
{
|
||||
if (ext_interval_buffer == nullptr)
|
||||
setExtIntervalBuffer(1);
|
||||
|
||||
uclockInitTimer();
|
||||
// first interval calculus
|
||||
setTempo(tempo);
|
||||
}
|
||||
|
||||
uint32_t uClockClass::bpmToMicroSeconds(float bpm)
|
||||
{
|
||||
return (60000000.0f / (float)output_ppqn / bpm);
|
||||
}
|
||||
|
||||
void uClockClass::calculateReferencedata()
|
||||
{
|
||||
mod_clock_ref = output_ppqn / input_ppqn;
|
||||
mod_sync24_ref = output_ppqn / PPQN_24;
|
||||
}
|
||||
|
||||
void uClockClass::setOutputPPQN(PPQNResolution resolution)
|
||||
{
|
||||
// dont allow PPQN lower than PPQN_4 for output clock (to avoid problems with mod_step_ref)
|
||||
if (resolution < PPQN_4)
|
||||
return;
|
||||
|
||||
ATOMIC(
|
||||
output_ppqn = resolution;
|
||||
calculateReferencedata();
|
||||
)
|
||||
}
|
||||
|
||||
void uClockClass::setInputPPQN(PPQNResolution resolution)
|
||||
{
|
||||
ATOMIC(
|
||||
input_ppqn = resolution;
|
||||
calculateReferencedata();
|
||||
)
|
||||
}
|
||||
|
||||
void uClockClass::start()
|
||||
{
|
||||
resetCounters();
|
||||
start_timer = millis();
|
||||
|
||||
if (onClockStartCallback) {
|
||||
onClockStartCallback();
|
||||
}
|
||||
|
||||
if (clock_mode == INTERNAL_CLOCK) {
|
||||
clock_state = STARTED;
|
||||
} else {
|
||||
clock_state = STARTING;
|
||||
}
|
||||
}
|
||||
|
||||
void uClockClass::stop()
|
||||
{
|
||||
clock_state = PAUSED;
|
||||
start_timer = 0;
|
||||
resetCounters();
|
||||
if (onClockStopCallback) {
|
||||
onClockStopCallback();
|
||||
}
|
||||
}
|
||||
|
||||
void uClockClass::pause()
|
||||
{
|
||||
if (clock_mode == INTERNAL_CLOCK) {
|
||||
if (clock_state == PAUSED) {
|
||||
start();
|
||||
} else {
|
||||
stop();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void uClockClass::setTempo(float bpm)
|
||||
{
|
||||
if (clock_mode == EXTERNAL_CLOCK) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (bpm < MIN_BPM || bpm > MAX_BPM) {
|
||||
return;
|
||||
}
|
||||
|
||||
ATOMIC(
|
||||
tempo = bpm
|
||||
)
|
||||
|
||||
setTimerTempo(bpm);
|
||||
}
|
||||
|
||||
float uClockClass::getTempo()
|
||||
{
|
||||
if (clock_mode == EXTERNAL_CLOCK) {
|
||||
uint32_t acc = 0;
|
||||
// wait the buffer to get full
|
||||
if (ext_interval_buffer[ext_interval_buffer_size-1] == 0) {
|
||||
return tempo;
|
||||
}
|
||||
for (uint8_t i=0; i < ext_interval_buffer_size; i++) {
|
||||
acc += ext_interval_buffer[i];
|
||||
}
|
||||
if (acc != 0) {
|
||||
return constrainBpm(freqToBpm(acc / ext_interval_buffer_size));
|
||||
}
|
||||
}
|
||||
return tempo;
|
||||
}
|
||||
|
||||
// for software timer implementation(fallback for no board support)
|
||||
void uClockClass::run() {}
|
||||
|
||||
float inline uClockClass::freqToBpm(uint32_t freq)
|
||||
{
|
||||
return 60000000.0f / (float)(freq * input_ppqn);
|
||||
}
|
||||
|
||||
float inline uClockClass::constrainBpm(float bpm)
|
||||
{
|
||||
return (bpm < MIN_BPM) ? MIN_BPM : ( bpm > MAX_BPM ? MAX_BPM : bpm );
|
||||
}
|
||||
|
||||
void uClockClass::setClockMode(ClockMode tempo_mode)
|
||||
{
|
||||
clock_mode = tempo_mode;
|
||||
}
|
||||
|
||||
uClockClass::ClockMode uClockClass::getClockMode()
|
||||
{
|
||||
return clock_mode;
|
||||
}
|
||||
|
||||
void uClockClass::clockMe()
|
||||
{
|
||||
if (clock_mode == EXTERNAL_CLOCK) {
|
||||
ATOMIC(
|
||||
handleExternalClock()
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
void uClockClass::setExtIntervalBuffer(uint8_t buffer_size)
|
||||
{
|
||||
if (ext_interval_buffer != nullptr)
|
||||
return;
|
||||
|
||||
// alloc once and forever policy
|
||||
ext_interval_buffer_size = buffer_size;
|
||||
ext_interval_buffer = (uint32_t*) malloc( sizeof(uint32_t) * ext_interval_buffer_size );
|
||||
}
|
||||
|
||||
void uClockClass::resetCounters()
|
||||
{
|
||||
tick = 0;
|
||||
int_clock_tick = 0;
|
||||
mod_clock_counter = 0;
|
||||
|
||||
mod_sync24_counter = 0;
|
||||
sync24_tick = 0;
|
||||
|
||||
ext_clock_tick = 0;
|
||||
ext_clock_us = 0;
|
||||
ext_interval_idx = 0;
|
||||
|
||||
for (uint8_t i=0; i < ext_interval_buffer_size; i++) {
|
||||
ext_interval_buffer[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void uClockClass::handleExternalClock()
|
||||
{
|
||||
switch (clock_state) {
|
||||
case PAUSED:
|
||||
break;
|
||||
|
||||
case STARTING:
|
||||
clock_state = STARTED;
|
||||
ext_clock_us = micros();
|
||||
break;
|
||||
|
||||
case STARTED:
|
||||
uint32_t now_clock_us = micros();
|
||||
last_interval = clock_diff(ext_clock_us, now_clock_us);
|
||||
ext_clock_us = now_clock_us;
|
||||
|
||||
// external clock tick me!
|
||||
ext_clock_tick++;
|
||||
|
||||
// accumulate interval incomming ticks data for getTempo() smooth reads on slave clock_mode
|
||||
if(++ext_interval_idx >= ext_interval_buffer_size) {
|
||||
ext_interval_idx = 0;
|
||||
}
|
||||
ext_interval_buffer[ext_interval_idx] = last_interval;
|
||||
|
||||
if (ext_clock_tick == 1) {
|
||||
ext_interval = last_interval;
|
||||
} else {
|
||||
ext_interval = (((uint32_t)ext_interval * (uint32_t)PLL_X) + (uint32_t)(256 - PLL_X) * (uint32_t)last_interval) >> 8;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void uClockClass::handleTimerInt()
|
||||
{
|
||||
// track main input clock counter
|
||||
if (mod_clock_counter == mod_clock_ref)
|
||||
mod_clock_counter = 0;
|
||||
|
||||
// process sync signals first please...
|
||||
if (mod_clock_counter == 0) {
|
||||
|
||||
if (clock_mode == EXTERNAL_CLOCK) {
|
||||
// sync tick position with external tick clock
|
||||
if ((int_clock_tick < ext_clock_tick) || (int_clock_tick > (ext_clock_tick + 1))) {
|
||||
int_clock_tick = ext_clock_tick;
|
||||
tick = int_clock_tick * mod_clock_ref;
|
||||
mod_clock_counter = tick % mod_clock_ref;
|
||||
}
|
||||
|
||||
uint32_t counter = ext_interval;
|
||||
uint32_t now_clock_us = micros();
|
||||
sync_interval = clock_diff(ext_clock_us, now_clock_us);
|
||||
|
||||
if (int_clock_tick <= ext_clock_tick) {
|
||||
counter -= phase_mult(sync_interval);
|
||||
} else {
|
||||
if (counter > sync_interval) {
|
||||
counter += phase_mult(counter - sync_interval);
|
||||
}
|
||||
}
|
||||
|
||||
// update internal clock timer frequency
|
||||
float bpm = constrainBpm(freqToBpm(counter));
|
||||
if (bpm != tempo) {
|
||||
tempo = bpm;
|
||||
setTimerTempo(bpm);
|
||||
}
|
||||
}
|
||||
|
||||
// internal clock tick me!
|
||||
++int_clock_tick;
|
||||
}
|
||||
++mod_clock_counter;
|
||||
|
||||
// Sync24 callback
|
||||
if (onSync24Callback) {
|
||||
if (mod_sync24_counter == mod_sync24_ref)
|
||||
mod_sync24_counter = 0;
|
||||
if (mod_sync24_counter == 0) {
|
||||
onSync24Callback(sync24_tick);
|
||||
++sync24_tick;
|
||||
}
|
||||
++mod_sync24_counter;
|
||||
}
|
||||
|
||||
// main PPQNCallback
|
||||
if (onOutputPPQNCallback) {
|
||||
onOutputPPQNCallback(tick);
|
||||
++tick;
|
||||
}
|
||||
}
|
||||
|
||||
// elapsed time support
|
||||
uint8_t uClockClass::getNumberOfSeconds(uint32_t time)
|
||||
{
|
||||
if ( time == 0 ) {
|
||||
return time;
|
||||
}
|
||||
return ((_millis - time) / 1000) % SECS_PER_MIN;
|
||||
}
|
||||
|
||||
uint8_t uClockClass::getNumberOfMinutes(uint32_t time)
|
||||
{
|
||||
if ( time == 0 ) {
|
||||
return time;
|
||||
}
|
||||
return (((_millis - time) / 1000) / SECS_PER_MIN) % SECS_PER_MIN;
|
||||
}
|
||||
|
||||
uint8_t uClockClass::getNumberOfHours(uint32_t time)
|
||||
{
|
||||
if ( time == 0 ) {
|
||||
return time;
|
||||
}
|
||||
return (((_millis - time) / 1000) % SECS_PER_DAY) / SECS_PER_HOUR;
|
||||
}
|
||||
|
||||
uint8_t uClockClass::getNumberOfDays(uint32_t time)
|
||||
{
|
||||
if ( time == 0 ) {
|
||||
return time;
|
||||
}
|
||||
return ((_millis - time) / 1000) / SECS_PER_DAY;
|
||||
}
|
||||
|
||||
uint32_t uClockClass::getNowTimer()
|
||||
{
|
||||
return _millis;
|
||||
}
|
||||
|
||||
uint32_t uClockClass::getPlayTime()
|
||||
{
|
||||
return start_timer;
|
||||
}
|
||||
|
||||
} } // end namespace umodular::clock
|
||||
|
||||
umodular::clock::uClockClass uClock;
|
||||
|
||||
volatile uint32_t _millis = 0;
|
||||
|
||||
//
|
||||
// TIMER HANDLER
|
||||
//
|
||||
void uClockHandler()
|
||||
{
|
||||
// global timer counter
|
||||
_millis = millis();
|
||||
|
||||
if (uClock.clock_state == uClock.STARTED) {
|
||||
uClock.handleTimerInt();
|
||||
}
|
||||
}
|
||||
180
uClock.h
Executable file
180
uClock.h
Executable file
@ -0,0 +1,180 @@
|
||||
/*!
|
||||
* @file uClock.h
|
||||
* Project BPM clock generator for Arduino
|
||||
* @brief A Library to implement BPM clock tick calls using hardware interruption. Supported and tested on AVR boards(ATmega168/328, ATmega16u4/32u4 and ATmega2560) and ARM boards(RPI2040, Teensy, Seedstudio XIAO M0 and ESP32)
|
||||
* @version 2.2.1
|
||||
* @author Romulo Silva
|
||||
* @date 10/06/2017
|
||||
* @license MIT - (c) 2024 - Romulo Silva - contact@midilab.co
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included
|
||||
* in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef __U_CLOCK_H__
|
||||
#define __U_CLOCK_H__
|
||||
|
||||
#include <Arduino.h>
|
||||
#include <inttypes.h>
|
||||
|
||||
namespace umodular { namespace clock {
|
||||
|
||||
#define MIN_BPM 1
|
||||
#define MAX_BPM 400
|
||||
|
||||
#define PHASE_FACTOR 16
|
||||
#define PLL_X 220
|
||||
|
||||
#define SECS_PER_MIN (60UL)
|
||||
#define SECS_PER_HOUR (3600UL)
|
||||
#define SECS_PER_DAY (SECS_PER_HOUR * 24L)
|
||||
|
||||
class uClockClass {
|
||||
|
||||
public:
|
||||
enum ClockMode {
|
||||
INTERNAL_CLOCK = 0,
|
||||
EXTERNAL_CLOCK
|
||||
};
|
||||
|
||||
enum ClockState {
|
||||
PAUSED = 0,
|
||||
STARTING,
|
||||
STARTED
|
||||
};
|
||||
|
||||
enum PPQNResolution {
|
||||
PPQN_1 = 1,
|
||||
PPQN_2 = 2,
|
||||
PPQN_4 = 4,
|
||||
PPQN_8 = 8,
|
||||
PPQN_12 = 12,
|
||||
PPQN_24 = 24,
|
||||
PPQN_48 = 48,
|
||||
PPQN_96 = 96,
|
||||
PPQN_384 = 384,
|
||||
PPQN_480 = 480,
|
||||
PPQN_960 = 960
|
||||
};
|
||||
|
||||
ClockState clock_state;
|
||||
|
||||
uClockClass();
|
||||
|
||||
void setOnOutputPPQN(void (*callback)(uint32_t tick)) {
|
||||
onOutputPPQNCallback = callback;
|
||||
}
|
||||
|
||||
void setOnSync24(void (*callback)(uint32_t tick)) {
|
||||
onSync24Callback = callback;
|
||||
}
|
||||
|
||||
void setOnClockStart(void (*callback)()) {
|
||||
onClockStartCallback = callback;
|
||||
}
|
||||
|
||||
void setOnClockStop(void (*callback)()) {
|
||||
onClockStopCallback = callback;
|
||||
}
|
||||
|
||||
void init();
|
||||
void setOutputPPQN(PPQNResolution resolution);
|
||||
void setInputPPQN(PPQNResolution resolution);
|
||||
|
||||
void handleTimerInt();
|
||||
void handleExternalClock();
|
||||
void resetCounters();
|
||||
|
||||
// external class control
|
||||
void start();
|
||||
void stop();
|
||||
void pause();
|
||||
void setTempo(float bpm);
|
||||
float getTempo();
|
||||
|
||||
// for software timer implementation(fallback for no board support)
|
||||
void run();
|
||||
|
||||
// external timming control
|
||||
void setClockMode(ClockMode tempo_mode);
|
||||
ClockMode getClockMode();
|
||||
void clockMe();
|
||||
// for smooth slave tempo calculate display you should raise the
|
||||
// buffer_size of ext_interval_buffer in between 64 to 128. 254 max size.
|
||||
// note: this doesn't impact on sync time, only display time getTempo()
|
||||
// if you dont want to use it, it is default set it to 1 for memory save
|
||||
void setExtIntervalBuffer(uint8_t buffer_size);
|
||||
|
||||
// elapsed time support
|
||||
uint8_t getNumberOfSeconds(uint32_t time);
|
||||
uint8_t getNumberOfMinutes(uint32_t time);
|
||||
uint8_t getNumberOfHours(uint32_t time);
|
||||
uint8_t getNumberOfDays(uint32_t time);
|
||||
uint32_t getNowTimer();
|
||||
uint32_t getPlayTime();
|
||||
|
||||
uint32_t bpmToMicroSeconds(float bpm);
|
||||
|
||||
private:
|
||||
float inline freqToBpm(uint32_t freq);
|
||||
float inline constrainBpm(float bpm);
|
||||
void calculateReferencedata();
|
||||
|
||||
void (*onOutputPPQNCallback)(uint32_t tick);
|
||||
void (*onSync24Callback)(uint32_t tick);
|
||||
void (*onClockStartCallback)();
|
||||
void (*onClockStopCallback)();
|
||||
|
||||
// clock input/output control
|
||||
PPQNResolution output_ppqn = PPQN_96;
|
||||
PPQNResolution input_ppqn = PPQN_24;
|
||||
// output and internal counters, ticks and references
|
||||
uint32_t tick;
|
||||
uint32_t int_clock_tick;
|
||||
uint8_t mod_clock_counter;
|
||||
uint16_t mod_clock_ref;
|
||||
|
||||
uint8_t mod_sync24_counter;
|
||||
uint16_t mod_sync24_ref;
|
||||
uint32_t sync24_tick;
|
||||
|
||||
// external clock control
|
||||
volatile uint32_t ext_clock_us;
|
||||
volatile uint32_t ext_clock_tick;
|
||||
volatile uint32_t ext_interval;
|
||||
uint32_t last_interval;
|
||||
uint32_t sync_interval;
|
||||
|
||||
float tempo;
|
||||
uint32_t start_timer;
|
||||
ClockMode clock_mode;
|
||||
|
||||
volatile uint32_t * ext_interval_buffer = nullptr;
|
||||
uint8_t ext_interval_buffer_size;
|
||||
uint16_t ext_interval_idx;
|
||||
};
|
||||
|
||||
} } // end namespace umodular::clock
|
||||
|
||||
extern umodular::clock::uClockClass uClock;
|
||||
|
||||
extern "C" {
|
||||
extern volatile uint32_t _millis;
|
||||
}
|
||||
|
||||
#endif /* __U_CLOCK_H__ */
|
||||
98
uClock/platforms/avr.h
Normal file
98
uClock/platforms/avr.h
Normal file
@ -0,0 +1,98 @@
|
||||
/*!
|
||||
* @file avr.h
|
||||
* Project BPM clock generator for Arduino
|
||||
* @brief A Library to implement BPM clock tick calls using hardware interruption. Supported and tested on AVR boards(ATmega168/328, ATmega16u4/32u4 and ATmega2560) and ARM boards(RPI2040, Teensy, Seedstudio XIAO M0 and ESP32)
|
||||
* @version 2.2.1
|
||||
* @author Romulo Silva
|
||||
* @date 10/06/2017
|
||||
* @license MIT - (c) 2024 - Romulo Silva - contact@midilab.co
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included
|
||||
* in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
#include <Arduino.h>
|
||||
|
||||
#define ATOMIC(X) noInterrupts(); X; interrupts();
|
||||
|
||||
// want a different avr clock support?
|
||||
// TODO: we should do this using macro guards for avrs different clocks freqeuncy setup at compile time
|
||||
#define AVR_CLOCK_FREQ 16000000
|
||||
|
||||
// forward declaration of uClockHandler
|
||||
void uClockHandler();
|
||||
|
||||
// AVR ISR Entrypoint
|
||||
ISR(TIMER1_COMPA_vect)
|
||||
{
|
||||
uClockHandler();
|
||||
}
|
||||
|
||||
void initTimer(uint32_t init_clock)
|
||||
{
|
||||
ATOMIC(
|
||||
// 16bits Timer1 init
|
||||
// begin at 120bpm (48.0007680122882 Hz)
|
||||
TCCR1A = 0; // set entire TCCR1A register to 0
|
||||
TCCR1B = 0; // same for TCCR1B
|
||||
TCNT1 = 0; // initialize counter value to 0
|
||||
// set compare match register for 48.0007680122882 Hz increments
|
||||
OCR1A = 41665; // = 16000000 / (8 * 48.0007680122882) - 1 (must be <65536)
|
||||
// turn on CTC mode
|
||||
TCCR1B |= (1 << WGM12);
|
||||
// Set CS12, CS11 and CS10 bits for 8 prescaler
|
||||
TCCR1B |= (0 << CS12) | (1 << CS11) | (0 << CS10);
|
||||
// enable timer compare interrupt
|
||||
TIMSK1 |= (1 << OCIE1A);
|
||||
)
|
||||
}
|
||||
|
||||
void setTimer(uint32_t us_interval)
|
||||
{
|
||||
float tick_hertz_interval = 1/((float)us_interval/1000000);
|
||||
|
||||
uint32_t ocr;
|
||||
uint8_t tccr = 0;
|
||||
|
||||
// 16bits avr timer setup
|
||||
if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 1 )) < 65535) {
|
||||
// Set CS12, CS11 and CS10 bits for 1 prescaler
|
||||
tccr |= (0 << CS12) | (0 << CS11) | (1 << CS10);
|
||||
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 8 )) < 65535) {
|
||||
// Set CS12, CS11 and CS10 bits for 8 prescaler
|
||||
tccr |= (0 << CS12) | (1 << CS11) | (0 << CS10);
|
||||
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 64 )) < 65535) {
|
||||
// Set CS12, CS11 and CS10 bits for 64 prescaler
|
||||
tccr |= (0 << CS12) | (1 << CS11) | (1 << CS10);
|
||||
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 256 )) < 65535) {
|
||||
// Set CS12, CS11 and CS10 bits for 256 prescaler
|
||||
tccr |= (1 << CS12) | (0 << CS11) | (0 << CS10);
|
||||
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 1024 )) < 65535) {
|
||||
// Set CS12, CS11 and CS10 bits for 1024 prescaler
|
||||
tccr |= (1 << CS12) | (0 << CS11) | (1 << CS10);
|
||||
} else {
|
||||
// tempo not achiavable
|
||||
return;
|
||||
}
|
||||
|
||||
ATOMIC(
|
||||
TCCR1B = 0;
|
||||
OCR1A = ocr-1;
|
||||
TCCR1B |= (1 << WGM12);
|
||||
TCCR1B |= tccr;
|
||||
)
|
||||
}
|
||||
180
uClock/uClock.h
Executable file
180
uClock/uClock.h
Executable file
@ -0,0 +1,180 @@
|
||||
/*!
|
||||
* @file uClock.h
|
||||
* Project BPM clock generator for Arduino
|
||||
* @brief A Library to implement BPM clock tick calls using hardware interruption. Supported and tested on AVR boards(ATmega168/328, ATmega16u4/32u4 and ATmega2560) and ARM boards(RPI2040, Teensy, Seedstudio XIAO M0 and ESP32)
|
||||
* @version 2.2.1
|
||||
* @author Romulo Silva
|
||||
* @date 10/06/2017
|
||||
* @license MIT - (c) 2024 - Romulo Silva - contact@midilab.co
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included
|
||||
* in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef __U_CLOCK_H__
|
||||
#define __U_CLOCK_H__
|
||||
|
||||
#include <Arduino.h>
|
||||
#include <inttypes.h>
|
||||
|
||||
namespace umodular { namespace clock {
|
||||
|
||||
#define MIN_BPM 1
|
||||
#define MAX_BPM 400
|
||||
|
||||
#define PHASE_FACTOR 16
|
||||
#define PLL_X 220
|
||||
|
||||
#define SECS_PER_MIN (60UL)
|
||||
#define SECS_PER_HOUR (3600UL)
|
||||
#define SECS_PER_DAY (SECS_PER_HOUR * 24L)
|
||||
|
||||
class uClockClass {
|
||||
|
||||
public:
|
||||
enum ClockMode {
|
||||
INTERNAL_CLOCK = 0,
|
||||
EXTERNAL_CLOCK
|
||||
};
|
||||
|
||||
enum ClockState {
|
||||
PAUSED = 0,
|
||||
STARTING,
|
||||
STARTED
|
||||
};
|
||||
|
||||
enum PPQNResolution {
|
||||
PPQN_1 = 1,
|
||||
PPQN_2 = 2,
|
||||
PPQN_4 = 4,
|
||||
PPQN_8 = 8,
|
||||
PPQN_12 = 12,
|
||||
PPQN_24 = 24,
|
||||
PPQN_48 = 48,
|
||||
PPQN_96 = 96,
|
||||
PPQN_384 = 384,
|
||||
PPQN_480 = 480,
|
||||
PPQN_960 = 960
|
||||
};
|
||||
|
||||
ClockState clock_state;
|
||||
|
||||
uClockClass();
|
||||
|
||||
void setOnOutputPPQN(void (*callback)(uint32_t tick)) {
|
||||
onOutputPPQNCallback = callback;
|
||||
}
|
||||
|
||||
void setOnSync24(void (*callback)(uint32_t tick)) {
|
||||
onSync24Callback = callback;
|
||||
}
|
||||
|
||||
void setOnClockStart(void (*callback)()) {
|
||||
onClockStartCallback = callback;
|
||||
}
|
||||
|
||||
void setOnClockStop(void (*callback)()) {
|
||||
onClockStopCallback = callback;
|
||||
}
|
||||
|
||||
void init();
|
||||
void setOutputPPQN(PPQNResolution resolution);
|
||||
void setInputPPQN(PPQNResolution resolution);
|
||||
|
||||
void handleTimerInt();
|
||||
void handleExternalClock();
|
||||
void resetCounters();
|
||||
|
||||
// external class control
|
||||
void start();
|
||||
void stop();
|
||||
void pause();
|
||||
void setTempo(float bpm);
|
||||
float getTempo();
|
||||
|
||||
// for software timer implementation(fallback for no board support)
|
||||
void run();
|
||||
|
||||
// external timming control
|
||||
void setClockMode(ClockMode tempo_mode);
|
||||
ClockMode getClockMode();
|
||||
void clockMe();
|
||||
// for smooth slave tempo calculate display you should raise the
|
||||
// buffer_size of ext_interval_buffer in between 64 to 128. 254 max size.
|
||||
// note: this doesn't impact on sync time, only display time getTempo()
|
||||
// if you dont want to use it, it is default set it to 1 for memory save
|
||||
void setExtIntervalBuffer(uint8_t buffer_size);
|
||||
|
||||
// elapsed time support
|
||||
uint8_t getNumberOfSeconds(uint32_t time);
|
||||
uint8_t getNumberOfMinutes(uint32_t time);
|
||||
uint8_t getNumberOfHours(uint32_t time);
|
||||
uint8_t getNumberOfDays(uint32_t time);
|
||||
uint32_t getNowTimer();
|
||||
uint32_t getPlayTime();
|
||||
|
||||
uint32_t bpmToMicroSeconds(float bpm);
|
||||
|
||||
private:
|
||||
float inline freqToBpm(uint32_t freq);
|
||||
float inline constrainBpm(float bpm);
|
||||
void calculateReferencedata();
|
||||
|
||||
void (*onOutputPPQNCallback)(uint32_t tick);
|
||||
void (*onSync24Callback)(uint32_t tick);
|
||||
void (*onClockStartCallback)();
|
||||
void (*onClockStopCallback)();
|
||||
|
||||
// clock input/output control
|
||||
PPQNResolution output_ppqn = PPQN_96;
|
||||
PPQNResolution input_ppqn = PPQN_24;
|
||||
// output and internal counters, ticks and references
|
||||
uint32_t tick;
|
||||
uint32_t int_clock_tick;
|
||||
uint8_t mod_clock_counter;
|
||||
uint16_t mod_clock_ref;
|
||||
|
||||
uint8_t mod_sync24_counter;
|
||||
uint16_t mod_sync24_ref;
|
||||
uint32_t sync24_tick;
|
||||
|
||||
// external clock control
|
||||
volatile uint32_t ext_clock_us;
|
||||
volatile uint32_t ext_clock_tick;
|
||||
volatile uint32_t ext_interval;
|
||||
uint32_t last_interval;
|
||||
uint32_t sync_interval;
|
||||
|
||||
float tempo;
|
||||
uint32_t start_timer;
|
||||
ClockMode clock_mode;
|
||||
|
||||
volatile uint32_t * ext_interval_buffer = nullptr;
|
||||
uint8_t ext_interval_buffer_size;
|
||||
uint16_t ext_interval_idx;
|
||||
};
|
||||
|
||||
} } // end namespace umodular::clock
|
||||
|
||||
extern umodular::clock::uClockClass uClock;
|
||||
|
||||
extern "C" {
|
||||
extern volatile uint32_t _millis;
|
||||
}
|
||||
|
||||
#endif /* __U_CLOCK_H__ */
|
||||
Reference in New Issue
Block a user