20 Commits

Author SHA1 Message Date
ed625e75fc Merge pull request 'Fix Save/Load State' (#28) from fix-save-state into main
Reviewed-on: #28
2025-08-17 17:18:56 +00:00
b60dcc0e68 one more 2025-08-16 11:00:31 -07:00
909d589609 make version consistent 2025-08-16 10:58:42 -07:00
330f5e6ceb improve docstring comments 2025-08-16 10:47:06 -07:00
87dacd869b improve the usage of disabling interrupts to avoid a potential race condition with isr being called between private method execution. 2025-08-16 10:06:11 -07:00
64f467d6ac Add missing metadata field in _loadMetadata 2025-08-16 09:55:43 -07:00
84cafe2387 Fix bug in metadata save/load state.
The sketch_name char array was to short, causing a buffer overflow.
2025-08-16 09:51:05 -07:00
8bb89a5f4b formatting 2025-08-14 07:31:43 -07:00
499bc7a643 Added more details explaining the structure of the repo 2025-08-14 07:29:02 -07:00
3f670fa9f7 Update docs and example firmware 2025-08-13 07:42:02 -07:00
b5029bde88 add skeleton app to examples 2025-08-13 07:19:06 -07:00
4bcd618073 Add skeleton app to examples 2025-08-13 07:18:45 -07:00
6ada2aba30 Add option to rotate the display (#27)
I needed to cut the bootsplash to make room for adding this features.

Reviewed-on: https://git.pinkduck.xyz/awonak/libGravity/pulls/27
2025-08-10 02:47:59 +00:00
c5965aa1f7 bug fix - need to recalculate pulses when mod duty and swing are changed. 2025-08-09 18:45:21 -07:00
7c02628403 Add more EXT clock source options (#23)
Fixes https://github.com/awonak/alt-gravity/issues/12

Reviewed-on: https://git.pinkduck.xyz/awonak/libGravity/pulls/23
2025-08-10 00:26:20 +00:00
1161da38c1 Add menu options for using cv input as Clock Run/Reset (#25)
Reviewed-on: https://git.pinkduck.xyz/awonak/libGravity/pulls/25
2025-08-10 00:25:06 +00:00
872af30fbc Refactor CV Mod (#24)
Move cv mod calculation to processClockTick. This is less ideas because it is an ISR, but it saves a significant amount of memory. Performance doesn't seem to take much of a hit.

Reviewed-on: https://git.pinkduck.xyz/awonak/libGravity/pulls/24
2025-08-09 23:59:24 +00:00
fc17afc9a1 Remove Reset State (#26)
This feature is essentially overlapping with loading default save slots. I need the few bytes it affords me.

Reviewed-on: https://git.pinkduck.xyz/awonak/libGravity/pulls/26
2025-08-09 23:57:10 +00:00
b6402380c0 fixed bug in cv mod of clock multiplication upper range. 2025-07-26 18:51:18 -07:00
19473db67e bump version in code 2025-07-24 18:38:34 -07:00
15 changed files with 423 additions and 243 deletions

View File

@ -1,6 +1,18 @@
# Sitka Instruments Gravity Firmware Abstraction
This library helps make writing firmware easier by abstracting away the initialization and peripheral interactions. Now your firmware code can just focus on the logic and behavior of the app, and keep the low level code neatly tucked away in this library.
This library helps make writing firmware for the [Sitka Instruments Gravity](https://sitkainstruments.com/gravity/) eurorack module easier by abstracting away the initialization and peripheral interactions. Now your firmware code can just focus on the logic and behavior of the app, and keep the low level code neatly tucked away in this library.
The latest releases of all Sitka Instruments Gravity firmware builds can be found on the [Updater](https://sitkainstruments.com/gravity/updater/) page. You can use this page to flash the latest build directly to the Arduino Nano on the back of your module.
## Project Code Layout
* [`src/`](src/) - **libGravity**: This is the hardware abstraction library used to simplify the creation of new Gravity module firmware by providing common reusable wrappers around the module peripherials like [DigitalOutput](src/digital_output.h#L18) providing methods like [`Update(uint8_t state)`](src/digital_output.h#L45) which allow you to set that output channel voltage high or low, and common module behavior like [Clock](src/clock.h#L30) which provides handlers like [`AttachExtHandler(callback)`](src/clock.h#L69) which takes a callback function to handle external clock tick behavior when receiving clock trigger.
* [`firmware/Gravity`](firmware/Gravity/) - **Alt Gravity**: This is the implementation of the default 6-channel trigger/gate clock modulation firmware. This is a full rewrite of the original firmware designed to use `libGravity` with a focus on open source friendlines.
* `firmware/GridSeq` - **GridSeq**: Comming Soon.
* [`examples/skeleton`](examples/skeleton/skeleton.ino) - **Skeleton**: This is the bare bones scaffloding for a `libGravity` firmware app.
## Installation
@ -17,13 +29,14 @@ Common directory locations:
* [uClock](https://github.com/midilab/uClock) [MIT] - (Included with this repo) Handle clock tempo, external clock input, and internal clock timer handler.
* [RotateEncoder](https://github.com/mathertel/RotaryEncoder) [BSD] - Library for reading and interpreting encoder rotation.
* [U8g2](https://github.com/olikraus/u8g2/) [MIT] - Graphics helper library.
* [NeoHWSerial](https://github.com/SlashDevin/NeoHWSerial) [GPL] - Hardware serial library with attachInterrupt.
## Example
Here's a trivial example showing some of the ways to interact with the library. This script rotates the active clock channel according to the set tempo. The encoder can change the temo or rotation direction. The play/pause button will toggle the clock activity on or off. The shift button will freeze the clock from advancing the channel rotation.
```cpp
#include "gravity.h"
#include "libGravity.h"
byte idx = 0;
bool reversed = false;
@ -75,11 +88,11 @@ void HandlePlayPressed() {
}
}
void HandleRotate(Direction dir, int val) {
void HandleRotate(int val) {
if (selected_param == 0) {
gravity.clock.SetTempo(gravity.clock.Tempo() + val);
} else if (selected_param == 1) {
reversed = (dir == DIRECTION_DECREMENT);
reversed = (val < 0);
}
}
@ -111,8 +124,16 @@ void UpdateDisplay() {
}
```
**Building New Firmware Using libGravity**
When starting a new firmware sketch you can use the [skeleton](examples/skeleton/skeleton.ino) app as a place to start.
**Building New Firmware from scratch**
If you do not want to use the libGravity hardware abstraction library and want to roll your own vanilla firmware, take a look at the [peripherials.h](src/peripherials.h) file for the pinout definitions used by the module.
### Build for release
```
$ arduino-cli compile -v -b arduino:avr:nano ./firmware/Gravity/Gravity.ino -e --output-dir=./build/
```
```

View File

@ -17,7 +17,7 @@
* TODO: Store the calibration value in EEPROM.
*/
#include "gravity.h"
#include "libGravity.h"
#define TEXT_FONT u8g2_font_profont11_tf
#define INDICATOR_FONT u8g2_font_open_iconic_arrow_1x_t
@ -43,7 +43,7 @@ void NextCalibrationPoint() {
selected_param = (selected_param + 1) % 6;
}
void CalibrateCV(Direction dir, int val) {
void CalibrateCV(int val) {
AnalogInput* cv = (selected_param > 2) ? &gravity.cv2 : &gravity.cv1;
switch (selected_param % 3) {
case 0:

View File

@ -14,7 +14,7 @@
*
*/
#include "gravity.h"
#include "libGravity.h"
#define TEXT_FONT u8g2_font_profont11_tf
@ -39,7 +39,7 @@ void NextCalibrationPoint() {
selected_param = (selected_param + 1) % 2;
}
void CalibrateCV(Direction dir, int val) {
void CalibrateCV(int val) {
// AnalogInput* cv = (selected_param > 2) ? &gravity.cv2 : &gravity.cv1;
AnalogInput* cv = &gravity.cv1;
switch (selected_param % 2) {

View File

@ -1,4 +1,4 @@
#include "gravity.h"
#include "libGravity.h"
byte idx = 0;
bool reversed = false;
@ -33,28 +33,28 @@ void IntClock(uint32_t tick) {
if (tick % 12 == 0 && ! freeze) {
gravity.outputs[idx].Low();
if (reversed) {
idx = (idx == 0) ? OUTPUT_COUNT - 1 : idx - 1;
idx = (idx == 0) ? Gravity::OUTPUT_COUNT - 1 : idx - 1;
} else {
idx = (idx + 1) % OUTPUT_COUNT;
idx = (idx + 1) % Gravity::OUTPUT_COUNT;
}
gravity.outputs[idx].High();
}
}
void HandlePlayPressed() {
gravity.clock.Pause();
gravity.clock.Stop();
if (gravity.clock.IsPaused()) {
for (int i = 0; i < OUTPUT_COUNT; i++) {
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
gravity.outputs[i].Low();
}
}
}
void HandleRotate(Direction dir, int val) {
void HandleRotate(int val) {
if (selected_param == 0) {
gravity.clock.SetTempo(gravity.clock.Tempo() + val);
} else if (selected_param == 1) {
reversed = (dir == DIRECTION_DECREMENT);
reversed = (val < 0);
}
}
@ -80,7 +80,7 @@ void UpdateDisplay() {
gravity.display.print("Direction: ");
gravity.display.print((reversed) ? "Backward" : "Forward");
gravity.display.drawChar(0, selected_param * 10, 0x10, 1, 0, 1);
gravity.display.drawStr(0, selected_param * 10, "x");
gravity.display.display();
}

View File

@ -0,0 +1,118 @@
/**
* @file skeleton.ino
* @author YOUR_NAME (<url>)
* @brief Skeleton app for Sitka Instruments Gravity.
* @version vX.Y.Z - MONTH YEAR YOUR_NAME
* @date YYYY-MM-DD
*
* @copyright MIT - (c) 2025 - Adam Wonak - adam.wonak@gmail.com
*
* Skeleton app for basic structure of a new firmware for Sitka Instruments
* Gravity using the libGravity library.
*
* ENCODER:
* Press: change between selecting a parameter and editing the parameter.
* Hold & Rotate: change current selected output channel.
*
* BTN1:
* Play/pause - start or stop the internal clock.
*
* BTN2:
* Shift - hold and rotate encoder to change current selected output channel.
*
* EXT:
* External clock input. When Gravity is set to INTERNAL or MIDI clock
* source, this input is used to reset clocks.
*
* CV1:
* External analog input used to provide modulation to any channel parameter.
*
* CV2:
* External analog input used to provide modulation to any channel parameter.
*
*/
#include <libGravity.h>
// Global state for settings and app behavior.
struct AppState {
int tempo = Clock::DEFAULT_TEMPO;
Clock::Source selected_source = Clock::SOURCE_INTERNAL;
// Add app specific state variables here.
};
AppState app;
//
// Arduino setup and loop.
//
void setup() {
// Start Gravity.
gravity.Init();
// Clock handlers.
gravity.clock.AttachIntHandler(HandleIntClockTick);
gravity.clock.AttachExtHandler(HandleExtClockTick);
// Encoder rotate and press handlers.
gravity.encoder.AttachPressHandler(HandleEncoderPressed);
gravity.encoder.AttachRotateHandler(HandleRotate);
gravity.encoder.AttachPressRotateHandler(HandlePressedRotate);
// Button press handlers.
gravity.play_button.AttachPressHandler(HandlePlayPressed);
}
void loop() {
// Process change in state of inputs and outputs.
gravity.Process();
// Non-ISR loop behavior.
}
//
// Firmware handlers for clocks.
//
void HandleIntClockTick(uint32_t tick) {
bool refresh = false;
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
// Process each output tick handlers.
}
}
void HandleExtClockTick() {
switch (app.selected_source) {
case Clock::SOURCE_INTERNAL:
case Clock::SOURCE_EXTERNAL_MIDI:
// Use EXT as Reset when not used for clock source.
gravity.clock.Reset();
break;
default:
// Register EXT cv clock tick.
gravity.clock.Tick();
}
}
//
// UI handlers for encoder and buttons.
//
void HandlePlayPressed() {
}
void HandleEncoderPressed() {
}
void HandleRotate(int val) {
}
void HandlePressedRotate(int val) {
}
//
// Application logic goes here.
//

View File

@ -2,7 +2,7 @@
* @file Gravity.ino
* @author Adam Wonak (https://github.com/awonak/)
* @brief Alt firmware version of Gravity by Sitka Instruments.
* @version v2.0.0 - June 2025 awonak - Full rewrite
* @version v2.0.1 - June 2025 awonak - Full rewrite
* @version v1.0 - August 2023 Oleksiy H - Initial release
* @date 2025-07-04
*
@ -42,7 +42,7 @@
*
* CV1:
* External analog input used to provide modulation to any channel parameter.
*
*
* CV2:
* External analog input used to provide modulation to any channel parameter.
*
@ -66,10 +66,6 @@ void setup() {
// Start Gravity.
gravity.Init();
// Show bootsplash when initializing firmware.
Bootsplash();
delay(2000);
// Initialize the state manager. This will load settings from EEPROM
stateManager.initialize(app);
InitGravity(app);
@ -91,18 +87,8 @@ void loop() {
// Process change in state of inputs and outputs.
gravity.Process();
// Read CVs and call the update function for each channel.
int cv1 = gravity.cv1.Read();
int cv2 = gravity.cv2.Read();
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
auto& ch = app.channel[i];
// Only apply CV to the channel when the current channel has cv
// mod configured.
if (ch.isCvModActive()) {
ch.applyCvMod(cv1, cv2);
}
}
// Check if cv run or reset is active and read cv.
CheckRunReset(gravity.cv1, gravity.cv2);
// Check for dirty state eligible to be saved.
stateManager.update(app);
@ -171,6 +157,27 @@ void HandleExtClockTick() {
app.refresh_screen = true;
}
void CheckRunReset(AnalogInput& cv1, AnalogInput& cv2) {
// Clock Run
if (app.cv_run == 1 || app.cv_run == 2) {
const int val = (app.cv_run == 1) ? cv1.Read() : cv2.Read();
if (val > AnalogInput::GATE_THRESHOLD && gravity.clock.IsPaused()) {
gravity.clock.Start();
app.refresh_screen = true;
} else if (val < AnalogInput::GATE_THRESHOLD && !gravity.clock.IsPaused()) {
gravity.clock.Stop();
ResetOutputs();
app.refresh_screen = true;
}
}
// Clock Reset
if ((app.cv_reset == 1 && cv1.IsRisingEdge(AnalogInput::GATE_THRESHOLD)) ||
(app.cv_reset == 2 && cv2.IsRisingEdge(AnalogInput::GATE_THRESHOLD))) {
gravity.clock.Reset();
}
}
//
// UI handlers for encoder and buttons.
//
@ -202,37 +209,42 @@ void HandleEncoderPressed() {
// Check if leaving editing mode should apply a selection.
if (app.editing_param) {
if (app.selected_channel == 0) { // main page
// TODO: rewrite as switch
if (app.selected_param == PARAM_MAIN_ENCODER_DIR) {
app.encoder_reversed = app.selected_sub_param == 1;
gravity.encoder.SetReverseDirection(app.encoder_reversed);
}
if (app.selected_param == PARAM_MAIN_SAVE_DATA) {
if (app.selected_sub_param < StateManager::MAX_SAVE_SLOTS) {
app.selected_save_slot = app.selected_sub_param;
stateManager.saveData(app);
}
}
if (app.selected_param == PARAM_MAIN_LOAD_DATA) {
if (app.selected_sub_param < StateManager::MAX_SAVE_SLOTS) {
app.selected_save_slot = app.selected_sub_param;
stateManager.loadData(app, app.selected_save_slot);
InitGravity(app);
}
}
if (app.selected_param == PARAM_MAIN_RESET_STATE) {
if (app.selected_sub_param == 0) { // Reset
stateManager.reset(app);
InitGravity(app);
}
}
if (app.selected_param == PARAM_MAIN_FACTORY_RESET) {
if (app.selected_sub_param == 0) { // Erase
// Show bootsplash during slow erase operation.
Bootsplash();
stateManager.factoryReset(app);
InitGravity(app);
}
switch (app.selected_param) {
case PARAM_MAIN_ENCODER_DIR:
app.encoder_reversed = app.selected_sub_param == 1;
gravity.encoder.SetReverseDirection(app.encoder_reversed);
break;
case PARAM_MAIN_ROTATE_DISP:
app.rotate_display = app.selected_sub_param == 1;
gravity.display.setFlipMode(app.rotate_display ? 1 : 0);
break;
case PARAM_MAIN_SAVE_DATA:
if (app.selected_sub_param < StateManager::MAX_SAVE_SLOTS) {
app.selected_save_slot = app.selected_sub_param;
stateManager.saveData(app);
}
break;
case PARAM_MAIN_LOAD_DATA:
if (app.selected_sub_param < StateManager::MAX_SAVE_SLOTS) {
app.selected_save_slot = app.selected_sub_param;
// Load pattern data into app state.
stateManager.loadData(app, app.selected_save_slot);
// Load global performance settings if they have changed.
if (gravity.clock.Tempo() != app.tempo) {
gravity.clock.SetTempo(app.tempo);
}
// Load global settings only clock is not active.
if (gravity.clock.IsPaused()) {
InitGravity(app);
}
}
break;
case PARAM_MAIN_FACTORY_RESET:
if (app.selected_sub_param == 0) { // Erase
stateManager.factoryReset(app);
InitGravity(app);
}
break;
}
}
// Only mark dirty and reset selected_sub_param when leaving editing mode.
@ -282,6 +294,14 @@ void editMainParameter(int val) {
gravity.clock.SetTempo(gravity.clock.Tempo() + val);
app.tempo = gravity.clock.Tempo();
break;
case PARAM_MAIN_RUN:
updateSelection(app.selected_sub_param, val, 3);
app.cv_run = app.selected_sub_param;
break;
case PARAM_MAIN_RESET:
updateSelection(app.selected_sub_param, val, 3);
app.cv_reset = app.selected_sub_param;
break;
case PARAM_MAIN_SOURCE: {
byte source = static_cast<int>(app.selected_source);
updateSelection(source, val, Clock::SOURCE_LAST);
@ -298,16 +318,15 @@ void editMainParameter(int val) {
}
break;
}
// These changes are applied upon encoder button press.
case PARAM_MAIN_ENCODER_DIR:
case PARAM_MAIN_ROTATE_DISP:
updateSelection(app.selected_sub_param, val, 2);
break;
case PARAM_MAIN_SAVE_DATA:
case PARAM_MAIN_LOAD_DATA:
updateSelection(app.selected_sub_param, val, StateManager::MAX_SAVE_SLOTS + 1);
break;
case PARAM_MAIN_RESET_STATE:
updateSelection(app.selected_sub_param, val, 2);
break;
case PARAM_MAIN_FACTORY_RESET:
updateSelection(app.selected_sub_param, val, 2);
break;
@ -370,6 +389,7 @@ void InitGravity(AppState& app) {
gravity.clock.SetTempo(app.tempo);
gravity.clock.SetSource(app.selected_source);
gravity.encoder.SetReverseDirection(app.encoder_reversed);
gravity.display.setFlipMode(app.rotate_display ? 1 : 0);
}
void ResetOutputs() {

View File

@ -25,10 +25,13 @@ struct AppState {
byte selected_channel = 0; // 0=tempo, 1-6=output channel
byte selected_swing = 0;
byte selected_save_slot = 0; // The currently active save slot.
byte cv_run = 0;
byte cv_reset = 0;
Clock::Source selected_source = Clock::SOURCE_INTERNAL;
Clock::Pulse selected_pulse = Clock::PULSE_PPQN_24;
bool editing_param = false;
bool encoder_reversed = false;
bool rotate_display = false;
bool refresh_screen = true;
};

View File

@ -70,14 +70,6 @@ class Channel {
base_duty_cycle = 50;
base_offset = 0;
base_swing = 50;
base_euc_steps = 1;
base_euc_hits = 1;
cvmod_clock_mod_index = base_clock_mod_index;
cvmod_probability = base_probability;
cvmod_duty_cycle = base_duty_cycle;
cvmod_offset = base_offset;
cvmod_swing = base_swing;
cv1_dest = CV_DEST_NONE;
cv2_dest = CV_DEST_NONE;
@ -88,78 +80,104 @@ class Channel {
_recalculatePulses();
}
bool isCvModActive() const { return cv1_dest != CV_DEST_NONE || cv2_dest != CV_DEST_NONE; }
// Setters (Set the BASE value)
void setClockMod(int index) {
base_clock_mod_index = constrain(index, 0, MOD_CHOICE_SIZE - 1);
if (!isCvModActive()) {
cvmod_clock_mod_index = base_clock_mod_index;
_recalculatePulses();
}
_recalculatePulses();
}
void setProbability(int prob) {
base_probability = constrain(prob, 0, 100);
if (!isCvModActive()) {
cvmod_probability = base_probability;
_recalculatePulses();
}
}
void setDutyCycle(int duty) {
base_duty_cycle = constrain(duty, 1, 99);
if (!isCvModActive()) {
cvmod_duty_cycle = base_duty_cycle;
_recalculatePulses();
}
_recalculatePulses();
}
void setOffset(int off) {
base_offset = constrain(off, 0, 99);
if (!isCvModActive()) {
cvmod_offset = base_offset;
_recalculatePulses();
}
_recalculatePulses();
}
void setSwing(int val) {
base_swing = constrain(val, 50, 95);
if (!isCvModActive()) {
cvmod_swing = base_swing;
_recalculatePulses();
}
_recalculatePulses();
}
// Euclidean
void setSteps(int val) {
base_euc_steps = constrain(val, 1, MAX_PATTERN_LEN);
if (cv1_dest != CV_DEST_EUC_STEPS && cv2_dest != CV_DEST_EUC_STEPS) {
pattern.SetSteps(val);
}
pattern.SetSteps(val);
}
void setHits(int val) {
base_euc_hits = constrain(val, 1, base_euc_steps);
if (cv1_dest != CV_DEST_EUC_HITS && cv2_dest != CV_DEST_EUC_HITS) {
pattern.SetHits(val);
}
pattern.SetHits(val);
}
void setCv1Dest(CvDestination dest) { cv1_dest = dest; }
void setCv2Dest(CvDestination dest) { cv2_dest = dest; }
void setCv1Dest(CvDestination dest) {
cv1_dest = dest;
_recalculatePulses();
}
void setCv2Dest(CvDestination dest) {
cv2_dest = dest;
_recalculatePulses();
}
CvDestination getCv1Dest() const { return cv1_dest; }
CvDestination getCv2Dest() const { return cv2_dest; }
// Getters (Get the BASE value for editing or cv modded value for display)
int getProbability() const { return base_probability; }
int getDutyCycle() const { return base_duty_cycle; }
int getOffset() const { return base_offset; }
int getSwing() const { return base_swing; }
int getClockMod() const { return pgm_read_word_near(&CLOCK_MOD[getClockModIndex()]); }
int getClockModIndex() const { return base_clock_mod_index; }
byte getSteps() const { return pattern.GetSteps(); }
byte getHits() const { return pattern.GetHits(); }
int getProbability(bool withCvMod = false) const { return withCvMod ? cvmod_probability : base_probability; }
int getDutyCycle(bool withCvMod = false) const { return withCvMod ? cvmod_duty_cycle : base_duty_cycle; }
int getOffset(bool withCvMod = false) const { return withCvMod ? cvmod_offset : base_offset; }
int getSwing(bool withCvMod = false) const { return withCvMod ? cvmod_swing : base_swing; }
int getClockMod(bool withCvMod = false) const { return pgm_read_word_near(&CLOCK_MOD[getClockModIndex(withCvMod)]); }
int getClockModIndex(bool withCvMod = false) const { return withCvMod ? cvmod_clock_mod_index : base_clock_mod_index; }
bool isCvModActive() const { return cv1_dest != CV_DEST_NONE || cv2_dest != CV_DEST_NONE; }
// Getters that calculate the value with CV modulation applied.
int getClockModIndexWithMod(int cv1_val, int cv2_val) {
int clock_mod_index = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -(MOD_CHOICE_SIZE / 2), MOD_CHOICE_SIZE / 2);
return constrain(base_clock_mod_index + clock_mod_index, 0, MOD_CHOICE_SIZE - 1);
}
byte getSteps(bool withCvMod = false) const { return withCvMod ? pattern.GetSteps() : base_euc_steps; }
byte getHits(bool withCvMod = false) const { return withCvMod ? pattern.GetHits() : base_euc_hits; }
int getClockModWithMod(int cv1_val, int cv2_val) {
int clock_mod = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -(MOD_CHOICE_SIZE / 2), MOD_CHOICE_SIZE / 2);
return pgm_read_word_near(&CLOCK_MOD[getClockModIndexWithMod(cv1_val, cv2_val)]);
}
int getProbabilityWithMod(int cv1_val, int cv2_val) {
int prob_mod = _calculateMod(CV_DEST_PROB, cv1_val, cv2_val, -50, 50);
return constrain(base_probability + prob_mod, 0, 100);
}
int getDutyCycleWithMod(int cv1_val, int cv2_val) {
int duty_mod = _calculateMod(CV_DEST_DUTY, cv1_val, cv2_val, -50, 50);
return constrain(base_duty_cycle + duty_mod, 1, 99);
}
int getOffsetWithMod(int cv1_val, int cv2_val) {
int offset_mod = _calculateMod(CV_DEST_OFFSET, cv1_val, cv2_val, -50, 50);
return constrain(base_offset + offset_mod, 0, 99);
}
int getSwingWithMod(int cv1_val, int cv2_val) {
int swing_mod = _calculateMod(CV_DEST_SWING, cv1_val, cv2_val, -25, 25);
return constrain(base_swing + swing_mod, 50, 95);
}
byte getStepsWithMod(int cv1_val, int cv2_val) {
int step_mod = _calculateMod(CV_DEST_EUC_STEPS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN);
return constrain(pattern.GetSteps() + step_mod, 1, MAX_PATTERN_LEN);
}
byte getHitsWithMod(int cv1_val, int cv2_val) {
// The number of hits is dependent on the modulated number of steps.
byte modulated_steps = getStepsWithMod(cv1_val, cv2_val);
int hit_mod = _calculateMod(CV_DEST_EUC_HITS, cv1_val, cv2_val, 0, modulated_steps);
return constrain(pattern.GetHits() + hit_mod, 1, modulated_steps);
}
void toggleMute() { mute = !mute; }
@ -176,6 +194,13 @@ class Channel {
return;
}
if (isCvModActive()) _recalculatePulses();
int cv1 = gravity.cv1.Read();
int cv2 = gravity.cv2.Read();
int cvmod_clock_mod_index = getClockModIndexWithMod(cv1, cv2);
int cvmod_probability = getProbabilityWithMod(cv1, cv2);
const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[cvmod_clock_mod_index]);
// Conditionally apply swing on down beats.
@ -211,56 +236,6 @@ class Channel {
output.Low();
}
}
/**
* @brief Calculate and store cv modded values using bipolar mapping.
* Default to base value if not the current CV destination.
*
* @param cv1_val analog input reading for cv1
* @param cv2_val analog input reading for cv2
*
*/
void applyCvMod(int cv1_val, int cv2_val) {
// Note: This is optimized for cpu performance. This method is called
// from the main loop and stores the cv mod values. This reduces CPU
// cycles inside the internal clock interrupt, which is preferrable.
// However, if RAM usage grows too much, we have an opportunity to
// refactor this to store just the CV read values, and calculate the
// cv mod value per channel inside the getter methods by passing cv
// values. This would reduce RAM usage, but would introduce a
// significant CPU cost, which may have undesirable performance issues.
if (!isCvModActive()) {
cvmod_clock_mod_index = base_clock_mod_index;
cvmod_probability = base_clock_mod_index;
cvmod_duty_cycle = base_clock_mod_index;
cvmod_offset = base_clock_mod_index;
cvmod_swing = base_clock_mod_index;
return;
}
int dest_mod = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -(MOD_CHOICE_SIZE / 2), MOD_CHOICE_SIZE / 2);
cvmod_clock_mod_index = constrain(base_clock_mod_index + dest_mod, 0, 100);
int prob_mod = _calculateMod(CV_DEST_PROB, cv1_val, cv2_val, -50, 50);
cvmod_probability = constrain(base_probability + prob_mod, 0, 100);
int duty_mod = _calculateMod(CV_DEST_DUTY, cv1_val, cv2_val, -50, 50);
cvmod_duty_cycle = constrain(base_duty_cycle + duty_mod, 1, 99);
int offset_mod = _calculateMod(CV_DEST_OFFSET, cv1_val, cv2_val, -50, 50);
cvmod_offset = constrain(base_offset + offset_mod, 0, 99);
int swing_mod = _calculateMod(CV_DEST_SWING, cv1_val, cv2_val, -25, 25);
cvmod_swing = constrain(base_swing + swing_mod, 50, 95);
int step_mod = _calculateMod(CV_DEST_EUC_STEPS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN);
pattern.SetSteps(base_euc_steps + step_mod);
int hit_mod = _calculateMod(CV_DEST_EUC_HITS, cv1_val, cv2_val, 0, pattern.GetSteps());
pattern.SetHits(base_euc_hits + hit_mod);
// After all cvmod values are updated, recalculate clock pulse modifiers.
_recalculatePulses();
}
private:
int _calculateMod(CvDestination dest, int cv1_val, int cv2_val, int min_range, int max_range) {
@ -270,13 +245,19 @@ class Channel {
}
void _recalculatePulses() {
const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[cvmod_clock_mod_index]);
_duty_pulses = max((long)((mod_pulses * (100L - cvmod_duty_cycle)) / 100L), 1L);
_offset_pulses = (long)((mod_pulses * (100L - cvmod_offset)) / 100L);
int cv1 = gravity.cv1.Read();
int cv2 = gravity.cv2.Read();
int clock_mod_index = getClockModIndexWithMod(cv1, cv2);
int duty_cycle = getDutyCycleWithMod(cv1, cv2);
int offset = getOffsetWithMod(cv1, cv2);
int swing = getSwingWithMod(cv1, cv2);
const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[clock_mod_index]);
_duty_pulses = max((long)((mod_pulses * (100L - duty_cycle)) / 100L), 1L);
_offset_pulses = (long)((mod_pulses * (100L - offset)) / 100L);
// Calculate the down beat swing amount.
if (cvmod_swing > 50) {
int shifted_swing = cvmod_swing - 50;
if (swing > 50) {
int shifted_swing = swing - 50;
_swing_pulse_amount = (long)((mod_pulses * (100L - shifted_swing)) / 100L);
} else {
_swing_pulse_amount = 0;
@ -289,15 +270,6 @@ class Channel {
byte base_duty_cycle;
byte base_offset;
byte base_swing;
byte base_euc_steps;
byte base_euc_hits;
// Base value with cv mod applied.
byte cvmod_clock_mod_index;
byte cvmod_probability;
byte cvmod_duty_cycle;
byte cvmod_offset;
byte cvmod_swing;
// CV mod configuration
CvDestination cv1_dest;

View File

@ -47,7 +47,7 @@ const uint8_t TEXT_FONT[437] U8G2_FONT_SECTION("velvetscreen") PROGMEM =
* https://stncrn.github.io/u8g2-unifont-helper/
* "%/0123456789ABCDEFILNORSTUVXx"
*/
const uint8_t LARGE_FONT[766] U8G2_FONT_SECTION("stk-l") =
const uint8_t LARGE_FONT[766] U8G2_FONT_SECTION("stk-l") PROGMEM =
"\35\0\4\4\4\5\3\1\6\20\30\0\0\27\0\0\0\1\77\0\0\2\341%'\17;\226\261\245FL"
"\64B\214\30\22\223\220)Bj\10Q\232\214\42R\206\310\210\21d\304\30\32a\254\304\270!\0/\14"
"\272\272\275\311H\321g\343\306\1\60\37|\373\35CJT\20:fW\207\320\210\60\42\304\204\30D\247"
@ -100,11 +100,13 @@ constexpr uint8_t CHANNEL_BOX_HEIGHT = 14;
enum ParamsMainPage : uint8_t {
PARAM_MAIN_TEMPO,
PARAM_MAIN_SOURCE,
PARAM_MAIN_RUN,
PARAM_MAIN_RESET,
PARAM_MAIN_PULSE,
PARAM_MAIN_ENCODER_DIR,
PARAM_MAIN_ROTATE_DISP,
PARAM_MAIN_SAVE_DATA,
PARAM_MAIN_LOAD_DATA,
PARAM_MAIN_RESET_STATE,
PARAM_MAIN_FACTORY_RESET,
PARAM_MAIN_LAST,
};
@ -255,11 +257,42 @@ void DisplayMainPage() {
case Clock::SOURCE_EXTERNAL_PPQN_4:
subText = F("4 PPQN");
break;
case Clock::SOURCE_EXTERNAL_PPQN_1:
subText = F("1 PPQN");
break;
case Clock::SOURCE_EXTERNAL_MIDI:
subText = F("MIDI");
break;
}
break;
case PARAM_MAIN_RUN:
mainText = F("RUN");
switch (app.cv_run) {
case 0:
subText = F("NONE");
break;
case 1:
subText = F("CV 1");
break;
case 2:
subText = F("CV 2");
break;
}
break;
case PARAM_MAIN_RESET:
mainText = F("RST");
switch (app.cv_reset) {
case 0:
subText = F("NONE");
break;
case 1:
subText = F("CV 1");
break;
case 2:
subText = F("CV 2");
break;
}
break;
case PARAM_MAIN_PULSE:
mainText = F("OUT");
switch (app.selected_pulse) {
@ -281,6 +314,10 @@ void DisplayMainPage() {
mainText = F("DIR");
subText = app.selected_sub_param == 0 ? F("DEFAULT") : F("REVERSED");
break;
case PARAM_MAIN_ROTATE_DISP:
mainText = F("ROT");
subText = app.selected_sub_param == 0 ? F("DEFAULT") : F("FLIPPED");
break;
case PARAM_MAIN_SAVE_DATA:
case PARAM_MAIN_LOAD_DATA:
if (app.selected_sub_param == StateManager::MAX_SAVE_SLOTS) {
@ -297,15 +334,6 @@ void DisplayMainPage() {
: F("LOAD FROM SLOT");
}
break;
case PARAM_MAIN_RESET_STATE:
if (app.selected_sub_param == 0) {
mainText = F("RST");
subText = F("RESET ALL");
} else {
mainText = F("x");
subText = F("BACK TO MAIN");
}
break;
case PARAM_MAIN_FACTORY_RESET:
if (app.selected_sub_param == 0) {
mainText = F("DEL");
@ -321,7 +349,7 @@ void DisplayMainPage() {
drawCenteredText(subText.c_str(), SUB_TEXT_Y, TEXT_FONT);
// Draw Main Page menu items
String menu_items[PARAM_MAIN_LAST] = {F("TEMPO"), F("SOURCE"), F("PULSE OUT"), F("ENCODER DIR"), F("SAVE"), F("LOAD"), F("RESET"), F("ERASE")};
String menu_items[PARAM_MAIN_LAST] = {F("TEMPO"), F("SOURCE"), F("CLK RUN"), F("CLK RESET"), F("PULSE OUT"), F("ENCODER DIR"), F("ROTATE DISP"), F("SAVE"), F("LOAD"), F("ERASE")};
drawMenuItems(menu_items, PARAM_MAIN_LAST);
}
@ -338,10 +366,12 @@ void DisplayChannelPage() {
// When editing a param, just show the base value. When not editing show
// the value with cv mod.
bool withCvMod = !app.editing_param;
int cv1 = gravity.cv1.Read();
int cv2 = gravity.cv2.Read();
switch (app.selected_param) {
case PARAM_CH_MOD: {
int mod_value = ch.getClockMod(withCvMod);
int mod_value = withCvMod ? ch.getClockModWithMod(cv1, cv2) : ch.getClockMod();
if (mod_value > 1) {
mainText = F("/");
mainText += String(mod_value);
@ -354,30 +384,30 @@ void DisplayChannelPage() {
break;
}
case PARAM_CH_PROB:
mainText = String(ch.getProbability(withCvMod)) + F("%");
mainText = String(withCvMod ? ch.getProbabilityWithMod(cv1, cv2) : ch.getProbability()) + F("%");
subText = F("HIT CHANCE");
break;
case PARAM_CH_DUTY:
mainText = String(ch.getDutyCycle(withCvMod)) + F("%");
mainText = String(withCvMod ? ch.getDutyCycleWithMod(cv1, cv2) : ch.getDutyCycle()) + F("%");
subText = F("PULSE WIDTH");
break;
case PARAM_CH_OFFSET:
mainText = String(ch.getOffset(withCvMod)) + F("%");
mainText = String(withCvMod ? ch.getOffsetWithMod(cv1, cv2) : ch.getOffset()) + F("%");
subText = F("SHIFT HIT");
break;
case PARAM_CH_SWING:
ch.getSwing() == 50
? mainText = F("OFF")
: mainText = String(ch.getSwing(withCvMod)) + F("%");
: mainText = String(withCvMod ? ch.getSwingWithMod(cv1, cv2) : ch.getSwing()) + F("%");
subText = "DOWN BEAT";
swingDivisionMark();
break;
case PARAM_CH_EUC_STEPS:
mainText = String(ch.getSteps(withCvMod));
mainText = String(withCvMod ? ch.getStepsWithMod(cv1, cv2) : ch.getSteps());
subText = "EUCLID STEPS";
break;
case PARAM_CH_EUC_HITS:
mainText = String(ch.getHits(withCvMod));
mainText = String(withCvMod ? ch.getHitsWithMod(cv1, cv2) : ch.getHits());
subText = "EUCLID HITS";
break;
case PARAM_CH_CV1_DEST:
@ -465,25 +495,7 @@ void UpdateDisplay() {
DisplayChannelPage();
}
// Global channel select UI.
DisplaySelectedChannel();
} while (gravity.display.nextPage());
}
void Bootsplash() {
gravity.display.firstPage();
do {
int textWidth;
String loadingText = F("LOADING....");
gravity.display.setFont(TEXT_FONT);
textWidth = gravity.display.getStrWidth(StateManager::SKETCH_NAME);
gravity.display.drawStr(16 + (textWidth / 2), 20, StateManager::SKETCH_NAME);
textWidth = gravity.display.getStrWidth(StateManager::SEMANTIC_VERSION);
gravity.display.drawStr(16 + (textWidth / 2), 32, StateManager::SEMANTIC_VERSION);
textWidth = gravity.display.getStrWidth(loadingText.c_str());
gravity.display.drawStr(26 + (textWidth / 2), 44, loadingText.c_str());
DisplaySelectedChannel();
} while (gravity.display.nextPage());
}

View File

@ -17,7 +17,7 @@
// Define the constants for the current firmware.
const char StateManager::SKETCH_NAME[] = "ALT GRAVITY";
const char StateManager::SEMANTIC_VERSION[] = "V2.0.0BETA2"; // NOTE: This should match the version in the library.properties file.
const char StateManager::SEMANTIC_VERSION[] = "2.0.1"; // NOTE: This should match the version in the library.properties file.
// Number of available save slots.
const byte StateManager::MAX_SAVE_SLOTS = 10;
@ -33,60 +33,74 @@ const int StateManager::EEPROM_DATA_START_ADDR = sizeof(StateManager::Metadata);
StateManager::StateManager() : _isDirty(false), _lastChangeTime(0) {}
bool StateManager::initialize(AppState& app) {
noInterrupts();
bool success = false;
if (_isDataValid()) {
// Load global settings.
_loadMetadata(app);
// Load app data from the transient slot.
_loadState(app, TRANSIENT_SLOT);
return true;
success = true;
}
// EEPROM does not contain save data for this firmware & version.
else {
// Erase EEPROM and initialize state. Save default pattern to all save slots.
factoryReset(app);
return false;
}
interrupts();
return success;
}
bool StateManager::loadData(AppState& app, byte slot_index) {
// Check if slot_index is within max range + 1 for transient.
if (slot_index >= MAX_SAVE_SLOTS + 1) return false;
noInterrupts();
// Load the state data from the specified EEPROM slot and update the app state save slot.
_loadState(app, slot_index);
app.selected_save_slot = slot_index;
// Persist this change in the global metadata.
_saveMetadata(app);
// Persist this change in the global metadata on next update.
_isDirty = true;
interrupts();
return true;
}
// Save app state to user specified save slot.
void StateManager::saveData(const AppState& app) {
noInterrupts();
// Check if slot_index is within max range + 1 for transient.
if (app.selected_save_slot >= MAX_SAVE_SLOTS + 1) return;
_saveState(app, app.selected_save_slot);
_saveMetadata(app);
_isDirty = false;
interrupts();
}
// Save transient state if it has changed and enough time has passed since last save.
void StateManager::update(const AppState& app) {
if (_isDirty && (millis() - _lastChangeTime > SAVE_DELAY_MS)) {
noInterrupts();
_saveState(app, TRANSIENT_SLOT);
_saveMetadata(app);
_isDirty = false;
interrupts();
}
}
void StateManager::reset(AppState& app) {
noInterrupts();
AppState default_app;
app.tempo = default_app.tempo;
app.selected_param = default_app.selected_param;
app.selected_channel = default_app.selected_channel;
app.selected_source = default_app.selected_source;
app.selected_pulse = default_app.selected_pulse;
app.cv_run = default_app.cv_run;
app.cv_reset = default_app.cv_reset;
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
app.channel[i].Init();
@ -96,6 +110,7 @@ void StateManager::reset(AppState& app) {
_loadMetadata(app);
_isDirty = false;
interrupts();
}
void StateManager::markDirty() {
@ -132,7 +147,6 @@ void StateManager::_saveState(const AppState& app, byte slot_index) {
// Check if slot_index is within max range + 1 for transient.
if (app.selected_save_slot >= MAX_SAVE_SLOTS + 1) return;
noInterrupts();
static EepromData save_data;
save_data.tempo = app.tempo;
@ -140,6 +154,8 @@ void StateManager::_saveState(const AppState& app, byte slot_index) {
save_data.selected_channel = app.selected_channel;
save_data.selected_source = static_cast<byte>(app.selected_source);
save_data.selected_pulse = static_cast<byte>(app.selected_pulse);
save_data.cv_run = app.cv_run;
save_data.cv_reset = app.cv_reset;
// TODO: break this out into a separate function. Save State should be
// broken out into global / per-channel save methods. When saving via
@ -148,27 +164,25 @@ void StateManager::_saveState(const AppState& app, byte slot_index) {
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
const auto& ch = app.channel[i];
auto& save_ch = save_data.channel_data[i];
save_ch.base_clock_mod_index = ch.getClockModIndex(false);
save_ch.base_probability = ch.getProbability(false);
save_ch.base_duty_cycle = ch.getDutyCycle(false);
save_ch.base_offset = ch.getOffset(false);
save_ch.base_swing = ch.getSwing(false);
save_ch.base_euc_steps = ch.getSteps(false);
save_ch.base_euc_hits = ch.getHits(false);
save_ch.base_clock_mod_index = ch.getClockModIndex();
save_ch.base_probability = ch.getProbability();
save_ch.base_duty_cycle = ch.getDutyCycle();
save_ch.base_offset = ch.getOffset();
save_ch.base_swing = ch.getSwing();
save_ch.base_euc_steps = ch.getSteps();
save_ch.base_euc_hits = ch.getHits();
save_ch.cv1_dest = static_cast<byte>(ch.getCv1Dest());
save_ch.cv2_dest = static_cast<byte>(ch.getCv2Dest());
}
int address = EEPROM_DATA_START_ADDR + (slot_index * sizeof(EepromData));
EEPROM.put(address, save_data);
interrupts();
}
void StateManager::_loadState(AppState& app, byte slot_index) {
// Check if slot_index is within max range + 1 for transient.
if (slot_index >= MAX_SAVE_SLOTS + 1) return;
noInterrupts();
static EepromData load_data;
int address = EEPROM_DATA_START_ADDR + (slot_index * sizeof(EepromData));
EEPROM.get(address, load_data);
@ -179,6 +193,8 @@ void StateManager::_loadState(AppState& app, byte slot_index) {
app.selected_channel = load_data.selected_channel;
app.selected_source = static_cast<Clock::Source>(load_data.selected_source);
app.selected_pulse = static_cast<Clock::Pulse>(load_data.selected_pulse);
app.cv_run = load_data.cv_run;
app.cv_reset = load_data.cv_reset;
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
auto& ch = app.channel[i];
@ -194,11 +210,9 @@ void StateManager::_loadState(AppState& app, byte slot_index) {
ch.setCv1Dest(static_cast<CvDestination>(saved_ch_state.cv1_dest));
ch.setCv2Dest(static_cast<CvDestination>(saved_ch_state.cv2_dest));
}
interrupts();
}
void StateManager::_saveMetadata(const AppState& app) {
noInterrupts();
Metadata current_meta;
strcpy(current_meta.sketch_name, SKETCH_NAME);
strcpy(current_meta.version, SEMANTIC_VERSION);
@ -206,16 +220,15 @@ void StateManager::_saveMetadata(const AppState& app) {
// Global user settings
current_meta.selected_save_slot = app.selected_save_slot;
current_meta.encoder_reversed = app.encoder_reversed;
current_meta.rotate_display = app.rotate_display;
EEPROM.put(METADATA_START_ADDR, current_meta);
interrupts();
}
void StateManager::_loadMetadata(AppState& app) {
noInterrupts();
Metadata metadata;
EEPROM.get(METADATA_START_ADDR, metadata);
app.selected_save_slot = metadata.selected_save_slot;
app.encoder_reversed = metadata.encoder_reversed;
interrupts();
app.rotate_display = metadata.rotate_display;
}

View File

@ -57,6 +57,7 @@ class StateManager {
// Additional global/hardware settings
byte selected_save_slot;
bool encoder_reversed;
bool rotate_display;
};
struct ChannelState {
byte base_clock_mod_index;
@ -76,6 +77,8 @@ class StateManager {
byte selected_channel;
byte selected_source;
byte selected_pulse;
byte cv_run;
byte cv_reset;
ChannelState channel_data[Gravity::OUTPUT_COUNT];
};

View File

@ -1,5 +1,5 @@
name=libGravity
version=2.0.0beta2
version=2.0.1
author=Adam Wonak
maintainer=awonak <github.com/awonak>
sentence=Hardware abstraction library for Sitka Instruments Gravity eurorack module
@ -7,4 +7,4 @@ category=Other
license=MIT
url=https://github.com/awonak/libGravity
architectures=avr
depends=uClock,RotaryEncoder,U8g2
depends=uClock,RotaryEncoder,U8g2,NeoHWSerial

View File

@ -19,6 +19,8 @@ const int CALIBRATED_HIGH = 512;
class AnalogInput {
public:
static const int GATE_THRESHOLD = 0;
AnalogInput() {}
~AnalogInput() {}
@ -74,6 +76,18 @@ class AnalogInput {
*/
inline float Voltage() { return ((read_ / 512.0) * 5.0); }
/**
* Checks for a rising edge transition across a threshold.
*
* @param threshold The value that the input must cross.
* @return True if the value just crossed the threshold from below, false otherwise.
*/
inline bool IsRisingEdge(int16_t threshold) const {
bool was_high = old_read_ > threshold;
bool is_high = read_ > threshold;
return is_high && !was_high;
}
private:
uint8_t pin_;
int16_t read_;

View File

@ -35,15 +35,16 @@ class Clock {
SOURCE_INTERNAL,
SOURCE_EXTERNAL_PPQN_24,
SOURCE_EXTERNAL_PPQN_4,
SOURCE_EXTERNAL_PPQN_1,
SOURCE_EXTERNAL_MIDI,
SOURCE_LAST,
};
enum Pulse {
PULSE_NONE,
PULSE_PPQN_1,
PULSE_PPQN_4,
PULSE_PPQN_24,
PULSE_PPQN_4,
PULSE_PPQN_1,
PULSE_LAST,
};
@ -96,6 +97,10 @@ class Clock {
uClock.setClockMode(uClock.EXTERNAL_CLOCK);
uClock.setInputPPQN(uClock.PPQN_4);
break;
case SOURCE_EXTERNAL_PPQN_1:
uClock.setClockMode(uClock.EXTERNAL_CLOCK);
uClock.setInputPPQN(uClock.PPQN_1);
break;
case SOURCE_EXTERNAL_MIDI:
uClock.setClockMode(uClock.EXTERNAL_CLOCK);
uClock.setInputPPQN(uClock.PPQN_24);

View File

@ -82,7 +82,6 @@ class DigitalOutput {
unsigned long last_triggered_;
uint8_t trigger_duration_;
uint8_t cv_pin_;
uint8_t led_pin_;
bool on_;
void update(uint8_t state) {