Files
libGravity/examples/clock_mod/clock_mod.ino

312 lines
9.2 KiB
C++

/**
* @file clock_mod.ino
* @author Adam Wonak (https://github.com/awonak/)
* @brief Demo firmware for Sitka Instruments Gravity.
* @version 0.1
* @date 2025-05-04
*
* @copyright Copyright (c) 2025
*
* ENCODER:
* Press to change between selecting a parameter and editing the parameter.
* Hold & Rotate to change current output channel pattern.
*
* BTN1: Play/pause the internal clock.
*
* BTN2: Shift button for additional UI navigation (unused).
*
*/
#include "gravity.h"
// Firmware state variables.
struct Channel {
byte clock_mod_index = 7; // x1
byte probability = 100;
byte duty_cycle = 50;
// int duty_cycle_pulses = 12; // 120 x1 24 PPQN
int duty_cycle_pulses = 48; // 120 x1 96 PPQN
byte offset = 0;
int offset_pulses = 0;
};
struct AppState {
bool refresh_screen = true;
byte selected_param = 0;
byte selected_channel = 0; // 0=tempo, 1-6=output channel
Source selected_source = SOURCE_INTERNAL;
Channel channel[OUTPUT_COUNT];
};
AppState app;
// The number of clock mod options, hepls validate choices and pulses arrays are the same size.
const int MOD_CHOICE_SIZE = 21;
// negative=multiply, positive=divide
const int clock_mod[MOD_CHOICE_SIZE] = {-24, -12, -8, -6, -4, -3, -2, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 24, 32, 64, 128};
// This represents the number of clock pulses for a 24 PPQN clock source that match the above div/mult mods.
// const int clock_mod_pulses[MOD_CHOICE_SIZE] = {1, 2, 3, 4, 6, 8, 12, 24, 48, 72, 96, 120, 144, 288, 168, 192, 384, 576, 768, 1536, 3072}; // LCM(322560)
// This represents the number of clock pulses for a 96 PPQN clock source that match the above div/mult mods.
const int clock_mod_pulses[MOD_CHOICE_SIZE] = {4, 8, 12, 16, 24, 32, 48, 96, 192, 288, 384, 480, 576, 1152, 672, 768, 1536, 2304, 3072, 6144, 12288};
const byte CHAR_PLAY = 0x10;
const byte CHAR_PAUSE = 0xB9;
//
// Arduino setup and loop.
//
void setup() {
// Start Gravity.
gravity.Init();
// Clock handlers.
gravity.clock->AttachExtHandler(ExtClock);
gravity.clock->AttachIntHandler(IntClock);
// Encoder rotate and press handlers.
gravity.encoder->AttachPressHandler(HandleEncoderPressed);
gravity.encoder->AttachRotateHandler(HandleRotate);
gravity.encoder->AttachPressRotateHandler(HandlePressedRotate);
// Button press handlers.
gravity.play_button->AttachPressHandler(HandlePlayPressed);
}
void loop() {
// Process change in state of inputs and outputs.
gravity.Process();
// Check if it's time to update the display
if (app.refresh_screen) {
UpdateDisplay();
}
}
//
// Firmware handlers.
//
void ExtClock() {
if (gravity.clock->ExternalSource()) {
gravity.clock->Tick();
app.refresh_screen = true;
}
}
void IntClock(uint32_t tick) {
for (int i = 0; i < OUTPUT_COUNT; i++) {
const auto& channel = app.channel[i];
auto& output = gravity.outputs[i];
const uint32_t mod_pulses = clock_mod_pulses[channel.clock_mod_index];
const uint32_t current_tick_offset = tick + channel.offset_pulses;
// Duty cycle high check.
if (current_tick_offset % mod_pulses == 0) {
if (channel.probability > random(0, 100)) {
output.High();
}
}
// Duty cycle low check.
const uint32_t duty_cycle_end_tick = tick + channel.duty_cycle_pulses + channel.offset_pulses;
if (duty_cycle_end_tick % mod_pulses == 0) {
output.Low();
}
}
}
void HandlePlayPressed() {
gravity.clock->Pause();
if (gravity.clock->IsPaused()) {
for (int i = 0; i < OUTPUT_COUNT; i++) {
gravity.outputs[i].Low();
}
}
app.refresh_screen = true;
}
void HandleEncoderPressed() {
// TODO: make this more generic/dynamic
// Main Global Settings Page.
if (app.selected_channel == 0) {
app.selected_param = (app.selected_param + 1) % 2;
}
// Selected Output Channels 1-6 Settings.
else {
app.selected_param = (app.selected_param + 1) % 4;
}
app.refresh_screen = true;
}
void HandleRotate(Direction dir, int val) {
// Execute the behavior of the current selected parameter.
// Main Global Settings Page.
if (app.selected_channel == 0) {
switch (app.selected_param) {
case 0:
if (gravity.clock->ExternalSource()) {
break;
}
gravity.clock->SetTempo(gravity.clock->Tempo() + val);
app.refresh_screen = true;
break;
case 1:
if (static_cast<Source>(app.selected_source) == 0 && val < 0) {
app.selected_source = static_cast<Source>(SOURCE_LAST - 1);
} else {
app.selected_source = static_cast<Source>((app.selected_source + val) % SOURCE_LAST);
}
gravity.clock->SetSource(app.selected_source);
app.refresh_screen = true;
break;
}
}
// Selected Output Channel Settings.
else {
auto& ch = GetSelectedChannel();
switch (app.selected_param) {
case 0:
if (dir == DIRECTION_INCREMENT && ch.clock_mod_index < MOD_CHOICE_SIZE - 1) {
ch.clock_mod_index += 1;
} else if (dir == DIRECTION_DECREMENT && ch.clock_mod_index > 0) {
ch.clock_mod_index -= 1;
}
break;
case 1:
ch.probability = constrain(ch.probability + val, 0, 100);
break;
case 2:
ch.duty_cycle = constrain(ch.duty_cycle + val, 0, 100);
break;
case 3:
ch.offset = constrain(ch.offset + val, 0, 100);
break;
}
uint32_t mod_pulses = clock_mod_pulses[ch.clock_mod_index];
ch.duty_cycle_pulses = max((int)((mod_pulses * (100L - ch.duty_cycle)) / 100L), 1);
ch.offset_pulses = (int)(mod_pulses * (100L - ch.offset) / 100L);
app.refresh_screen = true;
}
}
void HandlePressedRotate(Direction dir, int val) {
if (dir == DIRECTION_INCREMENT && app.selected_channel < OUTPUT_COUNT) {
app.selected_channel++;
} else if (dir == DIRECTION_DECREMENT && app.selected_channel > 0) {
app.selected_channel--;
}
app.selected_param = 0;
app.refresh_screen = true;
}
//
// Helper functions.
//
Channel& GetSelectedChannel() {
return app.channel[app.selected_channel - 1];
}
//
// UI Display functions.
//
void UpdateDisplay() {
app.refresh_screen = false;
gravity.display->clearDisplay();
if (app.selected_channel == 0) {
DisplayMainPage();
} else {
DisplayChannelPage();
}
// Show selected param indicator
gravity.display->drawChar(0, app.selected_param * 10, 0x10, 1, 0, 1);
// Global channel select UI.
DisplaySelectedChannel();
gravity.display->display();
}
void DisplaySelectedChannel() {
gravity.display->drawLine(1, 52, 126, 52, 1);
for (int i = 0; i < 7; i++) {
(app.selected_channel == i)
? gravity.display->fillRect(i * 18, 52, 18, 12, 1)
: gravity.display->drawLine(i * 18, 52, i * 18, 64, 1);
int selected = app.selected_channel == i;
if (i == 0) {
char icon = gravity.clock->IsPaused() ? CHAR_PAUSE : CHAR_PLAY;
gravity.display->drawChar((i * 18) + 7, 55, icon, !selected, selected, 1);
} else {
gravity.display->drawChar((i * 18) + 7, 55, i + 48, !selected, selected, 1);
}
}
gravity.display->drawLine(126, 52, 126, 64, 1);
}
void DisplayMainPage() {
gravity.display->setCursor(10, 0);
gravity.display->print(F("Tempo: "));
gravity.display->print(gravity.clock->Tempo());
gravity.display->setCursor(10, 10);
gravity.display->print(F("Source: "));
switch (app.selected_source) {
case SOURCE_INTERNAL:
gravity.display->print(F("INT"));
break;
case SOURCE_EXTERNAL_PPQN_24:
gravity.display->print(F("EXT 24 PPQN"));
break;
case SOURCE_EXTERNAL_PPQN_4:
gravity.display->print(F("EXT 4 PPQN"));
break;
// case SOURCE_EXTERNAL_MIDI:
// gravity.display->print(F("EXT MIDI"));
// break;
default:
break;
}
}
void DisplayChannelPage() {
auto& ch = GetSelectedChannel();
gravity.display->setCursor(10, 0);
gravity.display->print(F("Mod: "));
if (clock_mod[ch.clock_mod_index] > 1) {
gravity.display->print(F("/ "));
gravity.display->print(clock_mod[ch.clock_mod_index]);
} else {
gravity.display->print(F("X "));
gravity.display->print(abs(clock_mod[ch.clock_mod_index]));
}
gravity.display->setCursor(10, 10);
gravity.display->print(F("Probability: "));
gravity.display->print(ch.probability);
gravity.display->print(F("%"));
gravity.display->setCursor(10, 20);
gravity.display->print(F("Duty Cycle: "));
gravity.display->print(ch.duty_cycle);
gravity.display->print(F("%"));
gravity.display->setCursor(10, 30);
gravity.display->print(F("Offset: "));
gravity.display->print(ch.offset);
gravity.display->print(F("%"));
}