14 Commits

Author SHA1 Message Date
dbc41d767c reduce flash mem usage by moving common text to a const. 2025-08-09 18:35:37 -07:00
7c02628403 Add more EXT clock source options (#23)
Fixes https://github.com/awonak/alt-gravity/issues/12

Reviewed-on: https://git.pinkduck.xyz/awonak/libGravity/pulls/23
2025-08-10 00:26:20 +00:00
1161da38c1 Add menu options for using cv input as Clock Run/Reset (#25)
Reviewed-on: https://git.pinkduck.xyz/awonak/libGravity/pulls/25
2025-08-10 00:25:06 +00:00
872af30fbc Refactor CV Mod (#24)
Move cv mod calculation to processClockTick. This is less ideas because it is an ISR, but it saves a significant amount of memory. Performance doesn't seem to take much of a hit.

Reviewed-on: https://git.pinkduck.xyz/awonak/libGravity/pulls/24
2025-08-09 23:59:24 +00:00
fc17afc9a1 Remove Reset State (#26)
This feature is essentially overlapping with loading default save slots. I need the few bytes it affords me.

Reviewed-on: https://git.pinkduck.xyz/awonak/libGravity/pulls/26
2025-08-09 23:57:10 +00:00
b6402380c0 fixed bug in cv mod of clock multiplication upper range. 2025-07-26 18:51:18 -07:00
19473db67e bump version in code 2025-07-24 18:38:34 -07:00
dd7217d04e Fix euclidean hit mod 2025-07-24 18:27:24 -07:00
d1c8ee16a4 EXT will reset clocks in MIDI clock mode.
Add reset behavior for EXT clock input when MIDI clock source is selected.

Fixes: https://git.pinkduck.xyz/awonak/libGravity/issues/22
2025-07-24 08:35:05 -07:00
65dde4d62e Reorganization of library structure to better match Arduino spec (#20)
Note, this will also require to you "uninstall and reinstall" the Arduino library due to the library file location changes.

Reviewed-on: https://git.pinkduck.xyz/awonak/libGravity/pulls/20
2025-07-24 15:07:15 +00:00
c7a3277b5f Memory improvements in bootsplash and StateManager 2025-07-24 07:53:41 -07:00
fb44601707 Merge branch 'main' of https://git.pinkduck.xyz/awonak/libGravity 2025-07-23 18:08:10 -07:00
ec34bc3a7b Fix metadata loading issues with Initialization and refactor Factory Reset. (#19)
Reviewed-on: https://git.pinkduck.xyz/awonak/libGravity/pulls/19
2025-07-23 03:32:16 +00:00
01f32407f6 bump version 2025-07-20 17:53:03 -07:00
20 changed files with 338 additions and 435 deletions

View File

@ -17,7 +17,7 @@
*
*/
#include "gravity.h"
#include <libGravity.h>
// Firmware state variables.
struct Channel {

View File

@ -2,7 +2,7 @@
* @file Gravity.ino
* @author Adam Wonak (https://github.com/awonak/)
* @brief Alt firmware version of Gravity by Sitka Instruments.
* @version v2.0.1 - June 2025 awonak - Full rewrite
* @version v2.0.0 - June 2025 awonak - Full rewrite
* @version v1.0 - August 2023 Oleksiy H - Initial release
* @date 2025-07-04
*
@ -37,16 +37,18 @@
* Shift - hold and rotate encoder to change current selected output channel.
*
* EXT:
* External clock input. When Gravity is set to INTERNAL clock mode, this
* input is used to reset clocks.
* External clock input. When Gravity is set to INTERNAL or MIDI clock
* source, this input is used to reset clocks.
*
* CV1:
* External analog input used to provide modulation to any channel parameter.
*
* CV2:
* External analog input used to provide modulation to any channel parameter.
*
*/
#include <gravity.h>
#include <libGravity.h>
#include "app_state.h"
#include "channel.h"
@ -89,18 +91,8 @@ void loop() {
// Process change in state of inputs and outputs.
gravity.Process();
// Read CVs and call the update function for each channel.
int cv1 = gravity.cv1.Read();
int cv2 = gravity.cv2.Read();
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
auto& ch = app.channel[i];
// Only apply CV to the channel when the current channel has cv
// mod configured.
if (ch.isCvModActive()) {
ch.applyCvMod(cv1, cv2);
}
}
// Check if cv run or reset is active and read cv.
CheckRunReset(gravity.cv1, gravity.cv2);
// Check for dirty state eligible to be saved.
stateManager.update(app);
@ -155,17 +147,41 @@ void HandleIntClockTick(uint32_t tick) {
}
void HandleExtClockTick() {
if (gravity.clock.InternalSource()) {
// Use EXT as Reset when internally clocked.
ResetOutputs();
gravity.clock.Reset();
} else {
// Register clock tick.
gravity.clock.Tick();
switch (app.selected_source) {
case Clock::SOURCE_INTERNAL:
case Clock::SOURCE_EXTERNAL_MIDI:
// Use EXT as Reset when not used for clock source.
ResetOutputs();
gravity.clock.Reset();
break;
default:
// Register EXT cv clock tick.
gravity.clock.Tick();
}
app.refresh_screen = true;
}
void CheckRunReset(AnalogInput& cv1, AnalogInput& cv2) {
// Clock Run
if (app.cv_run == 1 || app.cv_run == 2) {
const int val = (app.cv_run == 1) ? cv1.Read() : cv2.Read();
if (val > AnalogInput::GATE_THRESHOLD && gravity.clock.IsPaused()) {
gravity.clock.Start();
app.refresh_screen = true;
} else if (val < AnalogInput::GATE_THRESHOLD && !gravity.clock.IsPaused()) {
gravity.clock.Stop();
ResetOutputs();
app.refresh_screen = true;
}
}
// Clock Reset
if ((app.cv_reset == 1 && cv1.IsRisingEdge(AnalogInput::GATE_THRESHOLD)) ||
(app.cv_reset == 2 && cv2.IsRisingEdge(AnalogInput::GATE_THRESHOLD))) {
gravity.clock.Reset();
}
}
//
// UI handlers for encoder and buttons.
//
@ -203,29 +219,23 @@ void HandleEncoderPressed() {
gravity.encoder.SetReverseDirection(app.encoder_reversed);
}
if (app.selected_param == PARAM_MAIN_SAVE_DATA) {
if (app.selected_sub_param < MAX_SAVE_SLOTS) {
if (app.selected_sub_param < StateManager::MAX_SAVE_SLOTS) {
app.selected_save_slot = app.selected_sub_param;
stateManager.saveData(app);
}
}
if (app.selected_param == PARAM_MAIN_LOAD_DATA) {
if (app.selected_sub_param < MAX_SAVE_SLOTS) {
if (app.selected_sub_param < StateManager::MAX_SAVE_SLOTS) {
app.selected_save_slot = app.selected_sub_param;
stateManager.loadData(app, app.selected_save_slot);
InitGravity(app);
}
}
if (app.selected_param == PARAM_MAIN_RESET_STATE) {
if (app.selected_sub_param == 0) { // Reset
stateManager.reset(app);
InitGravity(app);
}
}
if (app.selected_param == PARAM_MAIN_FACTORY_RESET) {
if (app.selected_sub_param == 0) { // Reset
if (app.selected_sub_param == 0) { // Erase
// Show bootsplash during slow erase operation.
Bootsplash();
stateManager.factoryReset();
stateManager.reset(app);
stateManager.factoryReset(app);
InitGravity(app);
}
}
@ -277,6 +287,14 @@ void editMainParameter(int val) {
gravity.clock.SetTempo(gravity.clock.Tempo() + val);
app.tempo = gravity.clock.Tempo();
break;
case PARAM_MAIN_RUN:
updateSelection(app.selected_sub_param, val, 3);
app.cv_run = app.selected_sub_param;
break;
case PARAM_MAIN_RESET:
updateSelection(app.selected_sub_param, val, 3);
app.cv_reset = app.selected_sub_param;
break;
case PARAM_MAIN_SOURCE: {
byte source = static_cast<int>(app.selected_source);
updateSelection(source, val, Clock::SOURCE_LAST);
@ -293,15 +311,13 @@ void editMainParameter(int val) {
}
break;
}
// These changes are applied upon encoder button press.
case PARAM_MAIN_ENCODER_DIR:
updateSelection(app.selected_sub_param, val, 2);
break;
case PARAM_MAIN_SAVE_DATA:
case PARAM_MAIN_LOAD_DATA:
updateSelection(app.selected_sub_param, val, MAX_SAVE_SLOTS + 1);
break;
case PARAM_MAIN_RESET_STATE:
updateSelection(app.selected_sub_param, val, 2);
updateSelection(app.selected_sub_param, val, StateManager::MAX_SAVE_SLOTS + 1);
break;
case PARAM_MAIN_FACTORY_RESET:
updateSelection(app.selected_sub_param, val, 2);

View File

@ -12,24 +12,26 @@
#ifndef APP_STATE_H
#define APP_STATE_H
#include <gravity.h>
#include <libGravity.h>
#include "channel.h"
// Global state for settings and app behavior.
struct AppState {
int tempo = Clock::DEFAULT_TEMPO;
bool encoder_reversed = false;
bool refresh_screen = true;
bool editing_param = false;
Channel channel[Gravity::OUTPUT_COUNT];
byte selected_param = 0;
byte selected_sub_param = 0; // Temporary value for editing params.
byte selected_channel = 0; // 0=tempo, 1-6=output channel
byte selected_swing = 0;
byte selected_save_slot = 0; // The currently active save slot.
byte cv_run = 0;
byte cv_reset = 0;
Clock::Source selected_source = Clock::SOURCE_INTERNAL;
Clock::Pulse selected_pulse = Clock::PULSE_PPQN_24;
Channel channel[Gravity::OUTPUT_COUNT];
bool editing_param = false;
bool encoder_reversed = false;
bool refresh_screen = true;
};
extern AppState app;

View File

@ -13,7 +13,7 @@
#define CHANNEL_H
#include <Arduino.h>
#include <gravity.h>
#include <libGravity.h>
#include "euclidean.h"
@ -70,14 +70,6 @@ class Channel {
base_duty_cycle = 50;
base_offset = 0;
base_swing = 50;
base_euc_steps = 1;
base_euc_hits = 1;
cvmod_clock_mod_index = base_clock_mod_index;
cvmod_probability = base_probability;
cvmod_duty_cycle = base_duty_cycle;
cvmod_offset = base_offset;
cvmod_swing = base_swing;
cv1_dest = CV_DEST_NONE;
cv2_dest = CV_DEST_NONE;
@ -88,78 +80,100 @@ class Channel {
_recalculatePulses();
}
bool isCvModActive() const { return cv1_dest != CV_DEST_NONE || cv2_dest != CV_DEST_NONE; }
// Setters (Set the BASE value)
void setClockMod(int index) {
base_clock_mod_index = constrain(index, 0, MOD_CHOICE_SIZE - 1);
if (!isCvModActive()) {
cvmod_clock_mod_index = base_clock_mod_index;
_recalculatePulses();
}
}
void setProbability(int prob) {
base_probability = constrain(prob, 0, 100);
if (!isCvModActive()) {
cvmod_probability = base_probability;
_recalculatePulses();
}
}
void setDutyCycle(int duty) {
base_duty_cycle = constrain(duty, 1, 99);
if (!isCvModActive()) {
cvmod_duty_cycle = base_duty_cycle;
_recalculatePulses();
}
}
void setOffset(int off) {
base_offset = constrain(off, 0, 99);
if (!isCvModActive()) {
cvmod_offset = base_offset;
_recalculatePulses();
}
}
void setSwing(int val) {
base_swing = constrain(val, 50, 95);
if (!isCvModActive()) {
cvmod_swing = base_swing;
_recalculatePulses();
}
}
// Euclidean
void setSteps(int val) {
base_euc_steps = constrain(val, 1, MAX_PATTERN_LEN);
if (cv1_dest != CV_DEST_EUC_STEPS && cv2_dest != CV_DEST_EUC_STEPS) {
pattern.SetSteps(val);
}
pattern.SetSteps(val);
}
void setHits(int val) {
base_euc_hits = constrain(val, 1, base_euc_steps);
if (cv1_dest != CV_DEST_EUC_HITS && cv2_dest != CV_DEST_EUC_HITS) {
pattern.SetHits(val);
}
pattern.SetHits(val);
}
void setCv1Dest(CvDestination dest) { cv1_dest = dest; }
void setCv2Dest(CvDestination dest) { cv2_dest = dest; }
void setCv1Dest(CvDestination dest) {
cv1_dest = dest;
_recalculatePulses();
}
void setCv2Dest(CvDestination dest) {
cv2_dest = dest;
_recalculatePulses();
}
CvDestination getCv1Dest() const { return cv1_dest; }
CvDestination getCv2Dest() const { return cv2_dest; }
// Getters (Get the BASE value for editing or cv modded value for display)
int getProbability() const { return base_probability; }
int getDutyCycle() const { return base_duty_cycle; }
int getOffset() const { return base_offset; }
int getSwing() const { return base_swing; }
int getClockMod() const { return pgm_read_word_near(&CLOCK_MOD[getClockModIndex()]); }
int getClockModIndex() const { return base_clock_mod_index; }
byte getSteps() const { return pattern.GetSteps(); }
byte getHits() const { return pattern.GetHits(); }
int getProbability(bool withCvMod = false) const { return withCvMod ? cvmod_probability : base_probability; }
int getDutyCycle(bool withCvMod = false) const { return withCvMod ? cvmod_duty_cycle : base_duty_cycle; }
int getOffset(bool withCvMod = false) const { return withCvMod ? cvmod_offset : base_offset; }
int getSwing(bool withCvMod = false) const { return withCvMod ? cvmod_swing : base_swing; }
int getClockMod(bool withCvMod = false) const { return pgm_read_word_near(&CLOCK_MOD[getClockModIndex(withCvMod)]); }
int getClockModIndex(bool withCvMod = false) const { return withCvMod ? cvmod_clock_mod_index : base_clock_mod_index; }
bool isCvModActive() const { return cv1_dest != CV_DEST_NONE || cv2_dest != CV_DEST_NONE; }
// Getters that calculate the value with CV modulation applied.
int getClockModIndexWithMod(int cv1_val, int cv2_val) {
int clock_mod_index = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -(MOD_CHOICE_SIZE / 2), MOD_CHOICE_SIZE / 2);
return constrain(base_clock_mod_index + clock_mod_index, 0, MOD_CHOICE_SIZE - 1);
}
byte getSteps(bool withCvMod = false) const { return withCvMod ? pattern.GetSteps() : base_euc_steps; }
byte getHits(bool withCvMod = false) const { return withCvMod ? pattern.GetHits() : base_euc_hits; }
int getClockModWithMod(int cv1_val, int cv2_val) {
int clock_mod = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -(MOD_CHOICE_SIZE / 2), MOD_CHOICE_SIZE / 2);
return pgm_read_word_near(&CLOCK_MOD[getClockModIndexWithMod(cv1_val, cv2_val)]);
}
int getProbabilityWithMod(int cv1_val, int cv2_val) {
int prob_mod = _calculateMod(CV_DEST_PROB, cv1_val, cv2_val, -50, 50);
return constrain(base_probability + prob_mod, 0, 100);
}
int getDutyCycleWithMod(int cv1_val, int cv2_val) {
int duty_mod = _calculateMod(CV_DEST_DUTY, cv1_val, cv2_val, -50, 50);
return constrain(base_duty_cycle + duty_mod, 1, 99);
}
int getOffsetWithMod(int cv1_val, int cv2_val) {
int offset_mod = _calculateMod(CV_DEST_OFFSET, cv1_val, cv2_val, -50, 50);
return constrain(base_offset + offset_mod, 0, 99);
}
int getSwingWithMod(int cv1_val, int cv2_val) {
int swing_mod = _calculateMod(CV_DEST_SWING, cv1_val, cv2_val, -25, 25);
return constrain(base_swing + swing_mod, 50, 95);
}
byte getStepsWithMod(int cv1_val, int cv2_val) {
int step_mod = _calculateMod(CV_DEST_EUC_STEPS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN);
return constrain(pattern.GetSteps() + step_mod, 1, MAX_PATTERN_LEN);
}
byte getHitsWithMod(int cv1_val, int cv2_val) {
// The number of hits is dependent on the modulated number of steps.
byte modulated_steps = getStepsWithMod(cv1_val, cv2_val);
int hit_mod = _calculateMod(CV_DEST_EUC_HITS, cv1_val, cv2_val, 0, modulated_steps);
return constrain(pattern.GetHits() + hit_mod, 1, modulated_steps);
}
void toggleMute() { mute = !mute; }
@ -176,6 +190,13 @@ class Channel {
return;
}
if (isCvModActive()) _recalculatePulses();
int cv1 = gravity.cv1.Read();
int cv2 = gravity.cv2.Read();
int cvmod_clock_mod_index = getClockModIndexWithMod(cv1, cv2);
int cvmod_probability = getProbabilityWithMod(cv1, cv2);
const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[cvmod_clock_mod_index]);
// Conditionally apply swing on down beats.
@ -211,56 +232,6 @@ class Channel {
output.Low();
}
}
/**
* @brief Calculate and store cv modded values using bipolar mapping.
* Default to base value if not the current CV destination.
*
* @param cv1_val analog input reading for cv1
* @param cv2_val analog input reading for cv2
*
*/
void applyCvMod(int cv1_val, int cv2_val) {
// Note: This is optimized for cpu performance. This method is called
// from the main loop and stores the cv mod values. This reduces CPU
// cycles inside the internal clock interrupt, which is preferrable.
// However, if RAM usage grows too much, we have an opportunity to
// refactor this to store just the CV read values, and calculate the
// cv mod value per channel inside the getter methods by passing cv
// values. This would reduce RAM usage, but would introduce a
// significant CPU cost, which may have undesirable performance issues.
if (!isCvModActive()) {
cvmod_clock_mod_index = base_clock_mod_index;
cvmod_probability = base_clock_mod_index;
cvmod_duty_cycle = base_clock_mod_index;
cvmod_offset = base_clock_mod_index;
cvmod_swing = base_clock_mod_index;
return;
}
int dest_mod = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -(MOD_CHOICE_SIZE / 2), MOD_CHOICE_SIZE / 2);
cvmod_clock_mod_index = constrain(base_clock_mod_index + dest_mod, 0, 100);
int prob_mod = _calculateMod(CV_DEST_PROB, cv1_val, cv2_val, -50, 50);
cvmod_probability = constrain(base_probability + prob_mod, 0, 100);
int duty_mod = _calculateMod(CV_DEST_DUTY, cv1_val, cv2_val, -50, 50);
cvmod_duty_cycle = constrain(base_duty_cycle + duty_mod, 1, 99);
int offset_mod = _calculateMod(CV_DEST_OFFSET, cv1_val, cv2_val, -50, 50);
cvmod_offset = constrain(base_offset + offset_mod, 0, 99);
int swing_mod = _calculateMod(CV_DEST_SWING, cv1_val, cv2_val, -25, 25);
cvmod_swing = constrain(base_swing + swing_mod, 50, 95);
int step_mod = _calculateMod(CV_DEST_EUC_STEPS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN);
pattern.SetSteps(base_euc_steps + step_mod);
int hit_mod = _calculateMod(CV_DEST_EUC_HITS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN);
pattern.SetHits(base_euc_hits + hit_mod);
// After all cvmod values are updated, recalculate clock pulse modifiers.
_recalculatePulses();
}
private:
int _calculateMod(CvDestination dest, int cv1_val, int cv2_val, int min_range, int max_range) {
@ -270,13 +241,19 @@ class Channel {
}
void _recalculatePulses() {
const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[cvmod_clock_mod_index]);
_duty_pulses = max((long)((mod_pulses * (100L - cvmod_duty_cycle)) / 100L), 1L);
_offset_pulses = (long)((mod_pulses * (100L - cvmod_offset)) / 100L);
int cv1 = gravity.cv1.Read();
int cv2 = gravity.cv2.Read();
int clock_mod_index = getClockModIndexWithMod(cv1, cv2);
int duty_cycle = getDutyCycleWithMod(cv1, cv2);
int offset = getOffsetWithMod(cv1, cv2);
int swing = getSwingWithMod(cv1, cv2);
const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[clock_mod_index]);
_duty_pulses = max((long)((mod_pulses * (100L - duty_cycle)) / 100L), 1L);
_offset_pulses = (long)((mod_pulses * (100L - offset)) / 100L);
// Calculate the down beat swing amount.
if (cvmod_swing > 50) {
int shifted_swing = cvmod_swing - 50;
if (swing > 50) {
int shifted_swing = swing - 50;
_swing_pulse_amount = (long)((mod_pulses * (100L - shifted_swing)) / 100L);
} else {
_swing_pulse_amount = 0;
@ -289,15 +266,6 @@ class Channel {
byte base_duty_cycle;
byte base_offset;
byte base_swing;
byte base_euc_steps;
byte base_euc_hits;
// Base value with cv mod applied.
byte cvmod_clock_mod_index;
byte cvmod_probability;
byte cvmod_duty_cycle;
byte cvmod_offset;
byte cvmod_swing;
// CV mod configuration
CvDestination cv1_dest;

View File

@ -47,7 +47,7 @@ const uint8_t TEXT_FONT[437] U8G2_FONT_SECTION("velvetscreen") PROGMEM =
* https://stncrn.github.io/u8g2-unifont-helper/
* "%/0123456789ABCDEFILNORSTUVXx"
*/
const uint8_t LARGE_FONT[766] U8G2_FONT_SECTION("stk-l") =
const uint8_t LARGE_FONT[766] U8G2_FONT_SECTION("stk-l") PROGMEM =
"\35\0\4\4\4\5\3\1\6\20\30\0\0\27\0\0\0\1\77\0\0\2\341%'\17;\226\261\245FL"
"\64B\214\30\22\223\220)Bj\10Q\232\214\42R\206\310\210\21d\304\30\32a\254\304\270!\0/\14"
"\272\272\275\311H\321g\343\306\1\60\37|\373\35CJT\20:fW\207\320\210\60\42\304\204\30D\247"
@ -100,11 +100,12 @@ constexpr uint8_t CHANNEL_BOX_HEIGHT = 14;
enum ParamsMainPage : uint8_t {
PARAM_MAIN_TEMPO,
PARAM_MAIN_SOURCE,
PARAM_MAIN_RUN,
PARAM_MAIN_RESET,
PARAM_MAIN_PULSE,
PARAM_MAIN_ENCODER_DIR,
PARAM_MAIN_SAVE_DATA,
PARAM_MAIN_LOAD_DATA,
PARAM_MAIN_RESET_STATE,
PARAM_MAIN_FACTORY_RESET,
PARAM_MAIN_LAST,
};
@ -123,6 +124,22 @@ enum ParamsChannelPage : uint8_t {
PARAM_CH_LAST,
};
// Common/resused strings stored as const to save on flash memory.
const char* const STR_24_PPQN = "24 PPQN";
const char* const STR_4_PPQN = "4 PPQN";
const char* const STR_1_PPQN = "1 PPQN";
const char* const STR_CV_1 = "CV 1";
const char* const STR_CV_2 = "CV 2";
const char* const STR_NONE = "NONE";
const char* const STR_EXT = "EXT";
const char* const STR_X = "X";
const char* const STR_DEFAULT = "DEFAULT";
const char* const STR_REVERSED = "REVERSED";
const char* const STR_FLIPPED = "FLIPPED";
const char* const STR_BACK = "BACK TO MAIN";
const char* const STR_EUC_STEPS = "EUCLID STEPS";
const char* const STR_EUC_HITS = "EUCLID HITS";
// Helper function to draw centered text
void drawCenteredText(const char* text, int y, const uint8_t* font) {
gravity.display.setFont(font);
@ -214,10 +231,10 @@ void swingDivisionMark() {
// Human friendly display value for save slot.
String displaySaveSlot(int slot) {
if (slot >= 0 && slot < MAX_SAVE_SLOTS / 2) {
if (slot >= 0 && slot < StateManager::MAX_SAVE_SLOTS / 2) {
return String("A") + String(slot + 1);
} else if (slot >= MAX_SAVE_SLOTS / 2 && slot <= MAX_SAVE_SLOTS) {
return String("B") + String(slot - (MAX_SAVE_SLOTS / 2) + 1);
} else if (slot >= StateManager::MAX_SAVE_SLOTS / 2 && slot <= StateManager::MAX_SAVE_SLOTS) {
return String("B") + String(slot - (StateManager::MAX_SAVE_SLOTS / 2) + 1);
}
}
@ -236,30 +253,61 @@ void DisplayMainPage() {
case PARAM_MAIN_TEMPO:
// Serial MIDI is too unstable to display bpm in real time.
if (app.selected_source == Clock::SOURCE_EXTERNAL_MIDI) {
mainText = F("EXT");
mainText = STR_EXT;
} else {
mainText = String(gravity.clock.Tempo());
}
subText = F("BPM");
break;
case PARAM_MAIN_SOURCE:
mainText = F("EXT");
mainText = STR_EXT;
switch (app.selected_source) {
case Clock::SOURCE_INTERNAL:
mainText = F("INT");
subText = F("CLOCK");
break;
case Clock::SOURCE_EXTERNAL_PPQN_24:
subText = F("24 PPQN");
subText = STR_24_PPQN;
break;
case Clock::SOURCE_EXTERNAL_PPQN_4:
subText = F("4 PPQN");
subText = STR_4_PPQN;
break;
case Clock::SOURCE_EXTERNAL_PPQN_1:
subText = STR_1_PPQN;
break;
case Clock::SOURCE_EXTERNAL_MIDI:
subText = F("MIDI");
break;
}
break;
case PARAM_MAIN_RUN:
mainText = F("RUN");
switch (app.cv_run) {
case 0:
subText = STR_NONE;
break;
case 1:
subText = STR_CV_1;
break;
case 2:
subText = STR_CV_2;
break;
}
break;
case PARAM_MAIN_RESET:
mainText = F("RST");
switch (app.cv_reset) {
case 0:
subText = STR_NONE;
break;
case 1:
subText = STR_CV_1;
break;
case 2:
subText = STR_CV_2;
break;
}
break;
case PARAM_MAIN_PULSE:
mainText = F("OUT");
switch (app.selected_pulse) {
@ -267,25 +315,25 @@ void DisplayMainPage() {
subText = F("PULSE OFF");
break;
case Clock::PULSE_PPQN_24:
subText = F("24 PPQN PULSE");
subText = STR_24_PPQN;
break;
case Clock::PULSE_PPQN_4:
subText = F("4 PPQN PULSE");
subText = STR_4_PPQN;
break;
case Clock::PULSE_PPQN_1:
subText = F("1 PPQN PULSE");
subText = STR_1_PPQN;
break;
}
break;
case PARAM_MAIN_ENCODER_DIR:
mainText = F("DIR");
subText = app.selected_sub_param == 0 ? F("DEFAULT") : F("REVERSED");
subText = app.selected_sub_param == 0 ? STR_DEFAULT : STR_REVERSED;
break;
case PARAM_MAIN_SAVE_DATA:
case PARAM_MAIN_LOAD_DATA:
if (app.selected_sub_param == MAX_SAVE_SLOTS) {
mainText = F("x");
subText = F("BACK TO MAIN");
if (app.selected_sub_param == StateManager::MAX_SAVE_SLOTS) {
mainText = STR_X;
subText = STR_BACK;
} else {
// Indicate currently active slot.
if (app.selected_sub_param == app.selected_save_slot) {
@ -297,22 +345,13 @@ void DisplayMainPage() {
: F("LOAD FROM SLOT");
}
break;
case PARAM_MAIN_RESET_STATE:
if (app.selected_sub_param == 0) {
mainText = F("RST");
subText = F("RESET ALL");
} else {
mainText = F("x");
subText = F("BACK TO MAIN");
}
break;
case PARAM_MAIN_FACTORY_RESET:
if (app.selected_sub_param == 0) {
mainText = F("DEL");
subText = F("FACTORY RESET");
} else {
mainText = F("x");
subText = F("BACK TO MAIN");
mainText = STR_X;
subText = STR_BACK;
}
break;
}
@ -321,7 +360,7 @@ void DisplayMainPage() {
drawCenteredText(subText.c_str(), SUB_TEXT_Y, TEXT_FONT);
// Draw Main Page menu items
String menu_items[PARAM_MAIN_LAST] = {F("TEMPO"), F("SOURCE"), F("PULSE OUT"), F("ENCODER DIR"), F("SAVE"), F("LOAD"), F("RESET"), F("ERASE")};
String menu_items[PARAM_MAIN_LAST] = {F("TEMPO"), F("SOURCE"), F("CLK RUN"), F("CLK RESET"), F("PULSE OUT"), F("ENCODER DIR"), F("SAVE"), F("LOAD"), F("ERASE")};
drawMenuItems(menu_items, PARAM_MAIN_LAST);
}
@ -338,10 +377,12 @@ void DisplayChannelPage() {
// When editing a param, just show the base value. When not editing show
// the value with cv mod.
bool withCvMod = !app.editing_param;
int cv1 = gravity.cv1.Read();
int cv2 = gravity.cv2.Read();
switch (app.selected_param) {
case PARAM_CH_MOD: {
int mod_value = ch.getClockMod(withCvMod);
int mod_value = withCvMod ? ch.getClockModWithMod(cv1, cv2): ch.getClockMod();
if (mod_value > 1) {
mainText = F("/");
mainText += String(mod_value);
@ -354,31 +395,31 @@ void DisplayChannelPage() {
break;
}
case PARAM_CH_PROB:
mainText = String(ch.getProbability(withCvMod)) + F("%");
mainText = String(withCvMod ? ch.getProbabilityWithMod(cv1, cv2) : ch.getProbability()) + F("%");
subText = F("HIT CHANCE");
break;
case PARAM_CH_DUTY:
mainText = String(ch.getDutyCycle(withCvMod)) + F("%");
mainText = String(withCvMod ? ch.getDutyCycleWithMod(cv1, cv2) : ch.getDutyCycle()) + F("%");
subText = F("PULSE WIDTH");
break;
case PARAM_CH_OFFSET:
mainText = String(ch.getOffset(withCvMod)) + F("%");
mainText = String(withCvMod ? ch.getOffsetWithMod(cv1, cv2) : ch.getOffset()) + F("%");
subText = F("SHIFT HIT");
break;
case PARAM_CH_SWING:
ch.getSwing() == 50
? mainText = F("OFF")
: mainText = String(ch.getSwing(withCvMod)) + F("%");
subText = "DOWN BEAT";
: mainText = String(withCvMod ? ch.getSwingWithMod(cv1, cv2) : ch.getSwing()) + F("%");
subText = F("DOWN BEAT");
swingDivisionMark();
break;
case PARAM_CH_EUC_STEPS:
mainText = String(ch.getSteps(withCvMod));
subText = "EUCLID STEPS";
mainText = String(withCvMod ? ch.getStepsWithMod(cv1, cv2) : ch.getSteps());
subText = STR_EUC_STEPS;
break;
case PARAM_CH_EUC_HITS:
mainText = String(ch.getHits(withCvMod));
subText = "EUCLID HITS";
mainText = String(withCvMod ? ch.getHitsWithMod(cv1, cv2) : ch.getHits());
subText = STR_EUC_HITS;
break;
case PARAM_CH_CV1_DEST:
case PARAM_CH_CV2_DEST: {
@ -403,10 +444,10 @@ void DisplayChannelPage() {
subText = F("SWING");
break;
case CV_DEST_EUC_STEPS:
subText = F("EUCLID STEPS");
subText = STR_EUC_STEPS;
break;
case CV_DEST_EUC_HITS:
subText = F("EUCLID HITS");
subText = STR_EUC_HITS;
break;
}
break;
@ -473,16 +514,17 @@ void Bootsplash() {
gravity.display.firstPage();
do {
int textWidth;
String loadingText = F("LOADING....");
gravity.display.setFont(TEXT_FONT);
textWidth = gravity.display.getStrWidth(SKETCH_NAME);
gravity.display.drawStr(24 + (textWidth / 2), 24, SKETCH_NAME);
textWidth = gravity.display.getStrWidth(StateManager::SKETCH_NAME);
gravity.display.drawStr(16 + (textWidth / 2), 20, StateManager::SKETCH_NAME);
textWidth = gravity.display.getStrWidth(SEMANTIC_VERSION);
gravity.display.drawStr(24 + (textWidth / 2), 36, SEMANTIC_VERSION);
textWidth = gravity.display.getStrWidth(StateManager::SEMANTIC_VERSION);
gravity.display.drawStr(16 + (textWidth / 2), 32, StateManager::SEMANTIC_VERSION);
textWidth = gravity.display.getStrWidth("LOADING....");
gravity.display.drawStr(34 + (textWidth / 2), 48, "LOADING....");
textWidth = gravity.display.getStrWidth(loadingText.c_str());
gravity.display.drawStr(26 + (textWidth / 2), 44, loadingText.c_str());
} while (gravity.display.nextPage());
}

View File

@ -15,28 +15,35 @@
#include "app_state.h"
// Define the constants for the current firmware.
const char StateManager::SKETCH_NAME[] = "ALT GRAVITY";
const char StateManager::SEMANTIC_VERSION[] = "V2.0.0BETA4"; // NOTE: This should match the version in the library.properties file.
// Number of available save slots.
const byte StateManager::MAX_SAVE_SLOTS = 10;
const byte StateManager::TRANSIENT_SLOT = 10;
// Define the minimum amount of time between EEPROM writes.
const unsigned long StateManager::SAVE_DELAY_MS = 2000;
// Calculate the starting address for EepromData, leaving space for metadata.
static const int METADATA_START_ADDR = 0;
static const int EEPROM_DATA_START_ADDR = sizeof(StateManager::Metadata);
const int StateManager::METADATA_START_ADDR = 0;
const int StateManager::EEPROM_DATA_START_ADDR = sizeof(StateManager::Metadata);
StateManager::StateManager() : _isDirty(false), _lastChangeTime(0) {}
bool StateManager::initialize(AppState& app) {
if (_isDataValid()) {
// Load data from the transient slot.
return loadData(app, TRANSIENT_SLOT);
// Load global settings.
_loadMetadata(app);
// Load app data from the transient slot.
_loadState(app, TRANSIENT_SLOT);
return true;
}
// EEPROM does not contain save data for this firmware & version.
else {
// Erase EEPROM and initialize state. Save default pattern to all save slots.
factoryReset();
// Initialize eeprom and save default patter to all save slots.
_saveMetadata(app);
reset(app);
for (int i = 0; i < MAX_SAVE_SLOTS; i++) {
_saveState(app, i);
}
_saveState(app, TRANSIENT_SLOT);
factoryReset(app);
return false;
}
}
@ -45,8 +52,11 @@ bool StateManager::loadData(AppState& app, byte slot_index) {
// Check if slot_index is within max range + 1 for transient.
if (slot_index >= MAX_SAVE_SLOTS + 1) return false;
// Load the state data from the specified EEPROM slot and update the app state save slot.
_loadState(app, slot_index);
_loadMetadata(app);
app.selected_save_slot = slot_index;
// Persist this change in the global metadata.
_saveMetadata(app);
return true;
}
@ -57,6 +67,7 @@ void StateManager::saveData(const AppState& app) {
if (app.selected_save_slot >= MAX_SAVE_SLOTS + 1) return;
_saveState(app, app.selected_save_slot);
_saveMetadata(app);
_isDirty = false;
}
@ -70,12 +81,14 @@ void StateManager::update(const AppState& app) {
}
void StateManager::reset(AppState& app) {
app.tempo = Clock::DEFAULT_TEMPO;
app.selected_param = 0;
app.selected_channel = 0;
app.selected_source = Clock::SOURCE_INTERNAL;
app.selected_pulse = Clock::PULSE_PPQN_24;
app.selected_save_slot = 0;
AppState default_app;
app.tempo = default_app.tempo;
app.selected_param = default_app.selected_param;
app.selected_channel = default_app.selected_channel;
app.selected_source = default_app.selected_source;
app.selected_pulse = default_app.selected_pulse;
app.cv_run = default_app.cv_run;
app.cv_reset = default_app.cv_reset;
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
app.channel[i].Init();
@ -93,19 +106,27 @@ void StateManager::markDirty() {
}
// Erases all data in the EEPROM by writing 0 to every address.
void StateManager::factoryReset() {
void StateManager::factoryReset(AppState& app) {
noInterrupts();
for (unsigned int i = 0; i < EEPROM.length(); i++) {
EEPROM.write(i, 0);
}
// Initialize eeprom and save default patter to all save slots.
_saveMetadata(app);
reset(app);
for (int i = 0; i < MAX_SAVE_SLOTS; i++) {
app.selected_save_slot = i;
_saveState(app, i);
}
_saveState(app, TRANSIENT_SLOT);
interrupts();
}
bool StateManager::_isDataValid() {
Metadata load_meta;
EEPROM.get(METADATA_START_ADDR, load_meta);
bool name_match = (strcmp(load_meta.sketch_name, SKETCH_NAME) == 0);
bool version_match = (strcmp(load_meta.version, SEMANTIC_VERSION) == 0);
Metadata metadata;
EEPROM.get(METADATA_START_ADDR, metadata);
bool name_match = (strcmp(metadata.sketch_name, SKETCH_NAME) == 0);
bool version_match = (strcmp(metadata.version, SEMANTIC_VERSION) == 0);
return name_match && version_match;
}
@ -117,11 +138,12 @@ void StateManager::_saveState(const AppState& app, byte slot_index) {
static EepromData save_data;
save_data.tempo = app.tempo;
save_data.encoder_reversed = app.encoder_reversed;
save_data.selected_param = app.selected_param;
save_data.selected_channel = app.selected_channel;
save_data.selected_source = static_cast<byte>(app.selected_source);
save_data.selected_pulse = static_cast<byte>(app.selected_pulse);
save_data.cv_run = app.cv_run;
save_data.cv_reset = app.cv_reset;
// TODO: break this out into a separate function. Save State should be
// broken out into global / per-channel save methods. When saving via
@ -130,13 +152,13 @@ void StateManager::_saveState(const AppState& app, byte slot_index) {
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
const auto& ch = app.channel[i];
auto& save_ch = save_data.channel_data[i];
save_ch.base_clock_mod_index = ch.getClockModIndex(false);
save_ch.base_probability = ch.getProbability(false);
save_ch.base_duty_cycle = ch.getDutyCycle(false);
save_ch.base_offset = ch.getOffset(false);
save_ch.base_swing = ch.getSwing(false);
save_ch.base_euc_steps = ch.getSteps(false);
save_ch.base_euc_hits = ch.getHits(false);
save_ch.base_clock_mod_index = ch.getClockModIndex();
save_ch.base_probability = ch.getProbability();
save_ch.base_duty_cycle = ch.getDutyCycle();
save_ch.base_offset = ch.getOffset();
save_ch.base_swing = ch.getSwing();
save_ch.base_euc_steps = ch.getSteps();
save_ch.base_euc_hits = ch.getHits();
save_ch.cv1_dest = static_cast<byte>(ch.getCv1Dest());
save_ch.cv2_dest = static_cast<byte>(ch.getCv2Dest());
}
@ -161,7 +183,8 @@ void StateManager::_loadState(AppState& app, byte slot_index) {
app.selected_channel = load_data.selected_channel;
app.selected_source = static_cast<Clock::Source>(load_data.selected_source);
app.selected_pulse = static_cast<Clock::Pulse>(load_data.selected_pulse);
app.selected_save_slot = slot_index;
app.cv_run = load_data.cv_run;
app.cv_reset = load_data.cv_reset;
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
auto& ch = app.channel[i];

View File

@ -13,22 +13,11 @@
#define SAVE_STATE_H
#include <Arduino.h>
#include <gravity.h>
#include <libGravity.h>
// Forward-declare AppState to avoid circular dependencies.
struct AppState;
// Define the constants for the current firmware.
const char SKETCH_NAME[] = "ALT GRAVITY";
const char SEMANTIC_VERSION[] = "V2.0.0BETA1";
// Number of available save slots.
const byte MAX_SAVE_SLOTS = 10; // Count of save slots 0 - 9 to save/load presets.
const byte TRANSIENT_SLOT = 10; // Transient slot index to persist state when powered off.
// Define the minimum amount of time between EEPROM writes.
static const unsigned long SAVE_DELAY_MS = 2000;
/**
* @brief Manages saving and loading of the application state to and from EEPROM.
* The number of user slots is defined by MAX_SAVE_SLOTS, and one additional slot
@ -39,6 +28,11 @@ static const unsigned long SAVE_DELAY_MS = 2000;
*/
class StateManager {
public:
static const char SKETCH_NAME[];
static const char SEMANTIC_VERSION[];
static const byte MAX_SAVE_SLOTS;
static const byte TRANSIENT_SLOT;
StateManager();
// Populate the AppState instance with values from EEPROM if they exist.
@ -54,7 +48,7 @@ class StateManager {
// Indicate that state has changed and we should save.
void markDirty();
// Erase all data stored in the EEPROM.
void factoryReset();
void factoryReset(AppState& app);
// This struct holds the data that identifies the firmware version.
struct Metadata {
@ -78,11 +72,12 @@ class StateManager {
// This struct holds all the parameters we want to save.
struct EepromData {
int tempo;
bool encoder_reversed;
byte selected_param;
byte selected_channel;
byte selected_source;
byte selected_pulse;
byte cv_run;
byte cv_reset;
ChannelState channel_data[Gravity::OUTPUT_COUNT];
};
@ -93,6 +88,10 @@ class StateManager {
void _saveState(const AppState& app, byte slot_index);
void _loadState(AppState& app, byte slot_index);
static const unsigned long SAVE_DELAY_MS;
static const int METADATA_START_ADDR;
static const int EEPROM_DATA_START_ADDR;
bool _isDirty;
unsigned long _lastChangeTime;
};

10
library.properties Normal file
View File

@ -0,0 +1,10 @@
name=libGravity
version=2.0.0beta3
author=Adam Wonak
maintainer=awonak <github.com/awonak>
sentence=Hardware abstraction library for Sitka Instruments Gravity eurorack module
category=Other
license=MIT
url=https://github.com/awonak/libGravity
architectures=avr
depends=uClock,RotaryEncoder,U8g2

View File

@ -19,6 +19,8 @@ const int CALIBRATED_HIGH = 512;
class AnalogInput {
public:
static const int GATE_THRESHOLD = 0;
AnalogInput() {}
~AnalogInput() {}
@ -74,6 +76,18 @@ class AnalogInput {
*/
inline float Voltage() { return ((read_ / 512.0) * 5.0); }
/**
* Checks for a rising edge transition across a threshold.
*
* @param threshold The value that the input must cross.
* @return True if the value just crossed the threshold from below, false otherwise.
*/
inline bool IsRisingEdge(int16_t threshold) const {
bool was_high = old_read_ > threshold;
bool is_high = read_ > threshold;
return is_high && !was_high;
}
private:
uint8_t pin_;
int16_t read_;

View File

@ -15,7 +15,7 @@
#include <NeoHWSerial.h>
#include "peripherials.h"
#include "uClock.h"
#include "uClock/uClock.h"
// MIDI clock, start, stop, and continue byte definitions - based on MIDI 1.0 Standards.
#define MIDI_CLOCK 0xF8
@ -35,6 +35,8 @@ class Clock {
SOURCE_INTERNAL,
SOURCE_EXTERNAL_PPQN_24,
SOURCE_EXTERNAL_PPQN_4,
SOURCE_EXTERNAL_PPQN_2,
SOURCE_EXTERNAL_PPQN_1,
SOURCE_EXTERNAL_MIDI,
SOURCE_LAST,
};
@ -96,6 +98,14 @@ class Clock {
uClock.setClockMode(uClock.EXTERNAL_CLOCK);
uClock.setInputPPQN(uClock.PPQN_4);
break;
case SOURCE_EXTERNAL_PPQN_2:
uClock.setClockMode(uClock.EXTERNAL_CLOCK);
uClock.setInputPPQN(uClock.PPQN_2);
break;
case SOURCE_EXTERNAL_PPQN_1:
uClock.setClockMode(uClock.EXTERNAL_CLOCK);
uClock.setInputPPQN(uClock.PPQN_1);
break;
case SOURCE_EXTERNAL_MIDI:
uClock.setClockMode(uClock.EXTERNAL_CLOCK);
uClock.setInputPPQN(uClock.PPQN_24);

View File

@ -82,7 +82,6 @@ class DigitalOutput {
unsigned long last_triggered_;
uint8_t trigger_duration_;
uint8_t cv_pin_;
uint8_t led_pin_;
bool on_;
void update(uint8_t state) {

View File

@ -1,5 +1,5 @@
/**
* @file gravity.cpp
* @file libGravity.cpp
* @author Adam Wonak (https://github.com/awonak)
* @brief Library for building custom scripts for the Sitka Instruments Gravity module.
* @version 0.1
@ -9,7 +9,7 @@
*
*/
#include "gravity.h"
#include "libGravity.h"
// Initialize the static pointer for the EncoderDir class to null. We want to
// have a static pointer to decouple the ISR from the global gravity object.

View File

@ -1,5 +1,5 @@
/**
* @file gravity.h
* @file libGravity.h
* @author Adam Wonak (https://github.com/awonak)
* @brief Library for building custom scripts for the Sitka Instruments Gravity module.
* @version 0.1

View File

@ -32,7 +32,7 @@
* DEALINGS IN THE SOFTWARE.
*/
#include "uClock.h"
#include "uClock/platforms/avr.h"
#include "platforms/avr.h"
//
// Platform specific timer setup/control

View File

@ -1,180 +0,0 @@
/*!
* @file uClock.h
* Project BPM clock generator for Arduino
* @brief A Library to implement BPM clock tick calls using hardware interruption. Supported and tested on AVR boards(ATmega168/328, ATmega16u4/32u4 and ATmega2560) and ARM boards(RPI2040, Teensy, Seedstudio XIAO M0 and ESP32)
* @version 2.2.1
* @author Romulo Silva
* @date 10/06/2017
* @license MIT - (c) 2024 - Romulo Silva - contact@midilab.co
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __U_CLOCK_H__
#define __U_CLOCK_H__
#include <Arduino.h>
#include <inttypes.h>
namespace umodular { namespace clock {
#define MIN_BPM 1
#define MAX_BPM 400
#define PHASE_FACTOR 16
#define PLL_X 220
#define SECS_PER_MIN (60UL)
#define SECS_PER_HOUR (3600UL)
#define SECS_PER_DAY (SECS_PER_HOUR * 24L)
class uClockClass {
public:
enum ClockMode {
INTERNAL_CLOCK = 0,
EXTERNAL_CLOCK
};
enum ClockState {
PAUSED = 0,
STARTING,
STARTED
};
enum PPQNResolution {
PPQN_1 = 1,
PPQN_2 = 2,
PPQN_4 = 4,
PPQN_8 = 8,
PPQN_12 = 12,
PPQN_24 = 24,
PPQN_48 = 48,
PPQN_96 = 96,
PPQN_384 = 384,
PPQN_480 = 480,
PPQN_960 = 960
};
ClockState clock_state;
uClockClass();
void setOnOutputPPQN(void (*callback)(uint32_t tick)) {
onOutputPPQNCallback = callback;
}
void setOnSync24(void (*callback)(uint32_t tick)) {
onSync24Callback = callback;
}
void setOnClockStart(void (*callback)()) {
onClockStartCallback = callback;
}
void setOnClockStop(void (*callback)()) {
onClockStopCallback = callback;
}
void init();
void setOutputPPQN(PPQNResolution resolution);
void setInputPPQN(PPQNResolution resolution);
void handleTimerInt();
void handleExternalClock();
void resetCounters();
// external class control
void start();
void stop();
void pause();
void setTempo(float bpm);
float getTempo();
// for software timer implementation(fallback for no board support)
void run();
// external timming control
void setClockMode(ClockMode tempo_mode);
ClockMode getClockMode();
void clockMe();
// for smooth slave tempo calculate display you should raise the
// buffer_size of ext_interval_buffer in between 64 to 128. 254 max size.
// note: this doesn't impact on sync time, only display time getTempo()
// if you dont want to use it, it is default set it to 1 for memory save
void setExtIntervalBuffer(uint8_t buffer_size);
// elapsed time support
uint8_t getNumberOfSeconds(uint32_t time);
uint8_t getNumberOfMinutes(uint32_t time);
uint8_t getNumberOfHours(uint32_t time);
uint8_t getNumberOfDays(uint32_t time);
uint32_t getNowTimer();
uint32_t getPlayTime();
uint32_t bpmToMicroSeconds(float bpm);
private:
float inline freqToBpm(uint32_t freq);
float inline constrainBpm(float bpm);
void calculateReferencedata();
void (*onOutputPPQNCallback)(uint32_t tick);
void (*onSync24Callback)(uint32_t tick);
void (*onClockStartCallback)();
void (*onClockStopCallback)();
// clock input/output control
PPQNResolution output_ppqn = PPQN_96;
PPQNResolution input_ppqn = PPQN_24;
// output and internal counters, ticks and references
uint32_t tick;
uint32_t int_clock_tick;
uint8_t mod_clock_counter;
uint16_t mod_clock_ref;
uint8_t mod_sync24_counter;
uint16_t mod_sync24_ref;
uint32_t sync24_tick;
// external clock control
volatile uint32_t ext_clock_us;
volatile uint32_t ext_clock_tick;
volatile uint32_t ext_interval;
uint32_t last_interval;
uint32_t sync_interval;
float tempo;
uint32_t start_timer;
ClockMode clock_mode;
volatile uint32_t * ext_interval_buffer = nullptr;
uint8_t ext_interval_buffer_size;
uint16_t ext_interval_idx;
};
} } // end namespace umodular::clock
extern umodular::clock::uClockClass uClock;
extern "C" {
extern volatile uint32_t _millis;
}
#endif /* __U_CLOCK_H__ */