migrate Gravity firmware into a new dedicated firmware directory.

This commit is contained in:
2025-07-04 10:57:22 -07:00
parent 14d1c497b3
commit f6b4b8a2ad
7 changed files with 0 additions and 0 deletions

View File

@ -0,0 +1,344 @@
/**
* @file Gravity.ino
* @author Adam Wonak (https://github.com/awonak/)
* @brief Alt firmware version of Gravity by Sitka Instruments.
* @version 0.1
* @date 2025-05-04
*
* @copyright Copyright (c) 2025
*
* This version of Gravity firmware is a full rewrite that leverages the
* libGravity hardware abstraction library. The goal of this project was to
* create an open source friendly version of the firmware that makes it easy
* for users/developers to modify and create their own original alt firmware
* implementations.
*
* The libGravity library represents wrappers around the
* hardware peripherials to make it easy to interact with and add behavior
* to them. The library tries not to make any assumptions about what the
* firmware can or should do.
*
* The Gravity firmware is a slightly different implementation of the original
* firmware. There are a few notable changes; the internal clock operates at
* 96 PPQN instead of the original 24 PPQN, which allows for more granular
* quantization of features like duty cycle (pulse width) or offset.
* Additionally, this firmware replaces the sequencer with a Euclidean Rhythm
* generator.
*
* ENCODER:
* Press: change between selecting a parameter and editing the parameter.
* Hold & Rotate: change current selected output channel.
*
* BTN1:
* Play/pause - start or stop the internal clock.
*
* BTN2:
* Shift - hold and rotate encoder to change current selected output channel.
*
* EXT:
* External clock input. When Gravity is set to INTERNAL clock mode, this
* input is used to reset clocks.
*
* CV1:
* CV2:
* External analog input used to provide modulation to any channel parameter.
*
*/
#include <gravity.h>
#include "app_state.h"
#include "channel.h"
#include "display.h"
#include "save_state.h"
AppState app;
StateManager stateManager;
//
// Arduino setup and loop.
//
void setup() {
// Start Gravity.
gravity.Init();
// Initialize the state manager. This will load settings from EEPROM
stateManager.initialize(app);
InitGravity(app);
// Clock handlers.
gravity.clock.AttachIntHandler(HandleIntClockTick);
gravity.clock.AttachExtHandler(HandleExtClockTick);
// Encoder rotate and press handlers.
gravity.encoder.AttachPressHandler(HandleEncoderPressed);
gravity.encoder.AttachRotateHandler(HandleRotate);
gravity.encoder.AttachPressRotateHandler(HandlePressedRotate);
// Button press handlers.
gravity.play_button.AttachPressHandler(HandlePlayPressed);
}
void loop() {
// Process change in state of inputs and outputs.
gravity.Process();
// Read CVs and call the update function for each channel.
int cv1 = gravity.cv1.Read();
int cv2 = gravity.cv2.Read();
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
auto& ch = app.channel[i];
// Only apply CV to the channel when the current channel has cv
// mod configured.
if (ch.isCvModActive()) {
ch.applyCvMod(cv1, cv2);
}
}
// Check for dirty state eligible to be saved.
stateManager.update(app);
if (app.refresh_screen) {
UpdateDisplay();
}
}
//
// Firmware handlers for clocks.
//
void HandleIntClockTick(uint32_t tick) {
bool refresh = false;
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
app.channel[i].processClockTick(tick, gravity.outputs[i]);
if (app.channel[i].isCvModActive()) {
refresh = true;
}
}
// Pulse Out gate
if (app.selected_pulse != Clock::PULSE_NONE) {
int clock_index;
switch (app.selected_pulse) {
case Clock::PULSE_PPQN_24:
clock_index = 0;
break;
case Clock::PULSE_PPQN_4:
clock_index = 4;
break;
case Clock::PULSE_PPQN_1:
clock_index = 7;
break;
}
const uint32_t pulse_high_ticks = CLOCK_MOD_PULSES[clock_index];
const uint32_t pulse_low_ticks = tick + max((pulse_high_ticks / 2), 1L);
if (tick % pulse_high_ticks == 0) {
gravity.pulse.High();
}
if (pulse_low_ticks % pulse_high_ticks == 0) {
gravity.pulse.Low();
}
}
if (!app.editing_param) {
app.refresh_screen |= refresh;
}
}
void HandleExtClockTick() {
if (gravity.clock.InternalSource()) {
// Use EXT as Reset when internally clocked.
ResetOutputs();
gravity.clock.Reset();
} else {
// Register clock tick.
gravity.clock.Tick();
}
app.refresh_screen = true;
}
//
// UI handlers for encoder and buttons.
//
void HandlePlayPressed() {
gravity.clock.IsPaused()
? gravity.clock.Start()
: gravity.clock.Stop();
ResetOutputs();
app.refresh_screen = true;
}
void HandleEncoderPressed() {
// Check if leaving editing mode should apply a selection.
if (app.editing_param) {
if (app.selected_channel == 0) { // main page
// TODO: rewrite as switch
if (app.selected_param == PARAM_MAIN_ENCODER_DIR) {
bool reversed = app.selected_sub_param == 1;
gravity.encoder.SetReverseDirection(reversed);
}
if (app.selected_param == PARAM_MAIN_SAVE_DATA) {
if (app.selected_sub_param < MAX_SAVE_SLOTS) {
app.selected_save_slot = app.selected_sub_param;
stateManager.saveData(app);
}
}
if (app.selected_param == PARAM_MAIN_LOAD_DATA) {
if (app.selected_sub_param < MAX_SAVE_SLOTS) {
app.selected_save_slot = app.selected_sub_param;
stateManager.loadData(app, app.selected_save_slot);
InitGravity(app);
}
}
if (app.selected_param == PARAM_MAIN_RESET_STATE) {
if (app.selected_sub_param == 0) { // Reset
stateManager.reset(app);
InitGravity(app);
}
}
}
// Only mark dirty and reset selected_sub_param when leaving editing mode.
stateManager.markDirty();
app.selected_sub_param = 0;
}
app.editing_param = !app.editing_param;
app.refresh_screen = true;
}
void HandleRotate(int val) {
// Shift & Rotate check
if (gravity.shift_button.On()) {
HandlePressedRotate(val);
return;
}
if (!app.editing_param) {
// Navigation Mode
const int max_param = (app.selected_channel == 0) ? PARAM_MAIN_LAST : PARAM_CH_LAST;
updateSelection(app.selected_param, val, max_param);
} else {
// Editing Mode
if (app.selected_channel == 0) {
editMainParameter(val);
} else {
editChannelParameter(val);
}
}
app.refresh_screen = true;
}
void HandlePressedRotate(int val) {
updateSelection(app.selected_channel, val, Gravity::OUTPUT_COUNT + 1);
app.selected_param = 0;
stateManager.markDirty();
app.refresh_screen = true;
}
void editMainParameter(int val) {
switch (static_cast<ParamsMainPage>(app.selected_param)) {
case PARAM_MAIN_TEMPO:
if (gravity.clock.ExternalSource()) {
break;
}
gravity.clock.SetTempo(gravity.clock.Tempo() + val);
app.tempo = gravity.clock.Tempo();
break;
case PARAM_MAIN_SOURCE: {
byte source = static_cast<int>(app.selected_source);
updateSelection(source, val, Clock::SOURCE_LAST);
app.selected_source = static_cast<Clock::Source>(source);
gravity.clock.SetSource(app.selected_source);
break;
}
case PARAM_MAIN_PULSE: {
byte pulse = static_cast<int>(app.selected_pulse);
updateSelection(pulse, val, Clock::PULSE_LAST);
app.selected_pulse = static_cast<Clock::Pulse>(pulse);
if (app.selected_pulse == Clock::PULSE_NONE) {
gravity.pulse.Low();
}
break;
}
case PARAM_MAIN_ENCODER_DIR:
updateSelection(app.selected_sub_param, val, 2);
break;
case PARAM_MAIN_SAVE_DATA:
case PARAM_MAIN_LOAD_DATA:
updateSelection(app.selected_sub_param, val, MAX_SAVE_SLOTS + 1);
break;
case PARAM_MAIN_RESET_STATE:
updateSelection(app.selected_sub_param, val, 2);
break;
}
}
void editChannelParameter(int val) {
auto& ch = GetSelectedChannel();
switch (app.selected_param) {
case PARAM_CH_MOD:
ch.setClockMod(ch.getClockModIndex() + val);
break;
case PARAM_CH_PROB:
ch.setProbability(ch.getProbability() + val);
break;
case PARAM_CH_DUTY:
ch.setDutyCycle(ch.getDutyCycle() + val);
break;
case PARAM_CH_OFFSET:
ch.setOffset(ch.getOffset() + val);
break;
case PARAM_CH_SWING:
ch.setSwing(ch.getSwing() + val);
break;
case PARAM_CH_EUC_STEPS:
ch.setSteps(ch.getSteps() + val);
break;
case PARAM_CH_EUC_HITS:
ch.setHits(ch.getHits() + val);
break;
case PARAM_CH_CV1_DEST: {
byte dest = static_cast<int>(ch.getCv1Dest());
updateSelection(dest, val, CV_DEST_LAST);
ch.setCv1Dest(static_cast<CvDestination>(dest));
break;
}
case PARAM_CH_CV2_DEST: {
byte dest = static_cast<int>(ch.getCv2Dest());
updateSelection(dest, val, CV_DEST_LAST);
ch.setCv2Dest(static_cast<CvDestination>(dest));
break;
}
}
}
// Changes the param by the value provided.
void updateSelection(byte& param, int change, int maxValue) {
// Do not apply acceleration if max value is less than 25.
if (maxValue < 25) {
change = change > 0 ? 1 : -1;
}
param = constrain(param + change, 0, maxValue - 1);
}
//
// App Helper functions.
//
void InitGravity(AppState& app) {
gravity.clock.SetTempo(app.tempo);
gravity.clock.SetSource(app.selected_source);
gravity.encoder.SetReverseDirection(app.encoder_reversed);
}
void ResetOutputs() {
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
gravity.outputs[i].Low();
}
}

View File

@ -0,0 +1,54 @@
#ifndef APP_STATE_H
#define APP_STATE_H
#include <gravity.h>
#include "channel.h"
// Global state for settings and app behavior.
struct AppState {
int tempo = Clock::DEFAULT_TEMPO;
bool encoder_reversed = false;
bool refresh_screen = true;
bool editing_param = false;
byte selected_param = 0;
byte selected_sub_param = 0; // Temporary value for editing params.
byte selected_channel = 0; // 0=tempo, 1-6=output channel
byte selected_swing = 0;
byte selected_save_slot = 0; // The currently active save slot.
Clock::Source selected_source = Clock::SOURCE_INTERNAL;
Clock::Pulse selected_pulse = Clock::PULSE_PPQN_24;
Channel channel[Gravity::OUTPUT_COUNT];
};
extern AppState app;
static Channel& GetSelectedChannel() {
return app.channel[app.selected_channel - 1];
}
enum ParamsMainPage : uint8_t {
PARAM_MAIN_TEMPO,
PARAM_MAIN_SOURCE,
PARAM_MAIN_PULSE,
PARAM_MAIN_ENCODER_DIR,
PARAM_MAIN_SAVE_DATA,
PARAM_MAIN_LOAD_DATA,
PARAM_MAIN_RESET_STATE,
PARAM_MAIN_LAST,
};
enum ParamsChannelPage : uint8_t {
PARAM_CH_MOD,
PARAM_CH_PROB,
PARAM_CH_DUTY,
PARAM_CH_OFFSET,
PARAM_CH_SWING,
PARAM_CH_EUC_STEPS,
PARAM_CH_EUC_HITS,
PARAM_CH_CV1_DEST,
PARAM_CH_CV2_DEST,
PARAM_CH_LAST,
};
#endif // APP_STATE_H

292
firmware/Gravity/channel.h Normal file
View File

@ -0,0 +1,292 @@
#ifndef CHANNEL_H
#define CHANNEL_H
#include <Arduino.h>
#include <gravity.h>
#include "euclidean.h"
// Enums for CV Mod destination
enum CvDestination : uint8_t {
CV_DEST_NONE,
CV_DEST_MOD,
CV_DEST_PROB,
CV_DEST_DUTY,
CV_DEST_OFFSET,
CV_DEST_SWING,
CV_DEST_EUC_STEPS,
CV_DEST_EUC_HITS,
CV_DEST_LAST,
};
static const byte MOD_CHOICE_SIZE = 25;
// Negative numbers are multipliers, positive are divisors.
static const int CLOCK_MOD[MOD_CHOICE_SIZE] PROGMEM = {
// Multipliers
-24, -16, -12, -8, -6, -4, -3, -2,
// Internal Clock Unity
1,
// Divisors
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 24, 32, 64, 128};
// This represents the number of clock pulses for a 96 PPQN clock source
// that match the above div/mult mods.
static const int CLOCK_MOD_PULSES[MOD_CHOICE_SIZE] PROGMEM = {
// Multiplier Pulses (96 / X)
4, 6, 8, 12, 16, 24, 32, 48,
// Internal Clock Pulses
96,
// Divisor Pulses (96 * X)
192, 288, 384, 480, 576, 672, 768, 864, 960, 1056, 1152, 1536, 2304, 3072, 6144, 12288};
static const byte DEFAULT_CLOCK_MOD_INDEX = 8; // x1 or 96 PPQN.
class Channel {
public:
Channel() {
Init();
}
void Init() {
// Reset base values to their defaults
base_clock_mod_index = DEFAULT_CLOCK_MOD_INDEX;
base_probability = 100;
base_duty_cycle = 50;
base_offset = 0;
base_swing = 50;
base_euc_steps = 1;
base_euc_hits = 1;
cvmod_clock_mod_index = base_clock_mod_index;
cvmod_probability = base_probability;
cvmod_duty_cycle = base_duty_cycle;
cvmod_offset = base_offset;
cvmod_swing = base_swing;
cv1_dest = CV_DEST_NONE;
cv2_dest = CV_DEST_NONE;
pattern.Init(DEFAULT_PATTERN);
// Calcule the clock mod pulses on init.
_recalculatePulses();
}
// Setters (Set the BASE value)
void setClockMod(int index) {
base_clock_mod_index = constrain(index, 0, MOD_CHOICE_SIZE - 1);
if (!isCvModActive()) {
cvmod_clock_mod_index = base_clock_mod_index;
_recalculatePulses();
}
}
void setProbability(int prob) {
base_probability = constrain(prob, 0, 100);
if (!isCvModActive()) {
cvmod_probability = base_probability;
_recalculatePulses();
}
}
void setDutyCycle(int duty) {
base_duty_cycle = constrain(duty, 1, 99);
if (!isCvModActive()) {
cvmod_duty_cycle = base_duty_cycle;
_recalculatePulses();
}
}
void setOffset(int off) {
base_offset = constrain(off, 0, 99);
if (!isCvModActive()) {
cvmod_offset = base_offset;
_recalculatePulses();
}
}
void setSwing(int val) {
base_swing = constrain(val, 50, 95);
if (!isCvModActive()) {
cvmod_swing = base_swing;
_recalculatePulses();
}
}
// Euclidean
void setSteps(int val) {
base_euc_steps = constrain(val, 1, MAX_PATTERN_LEN);
if (cv1_dest != CV_DEST_EUC_STEPS && cv2_dest != CV_DEST_EUC_STEPS) {
pattern.SetSteps(val);
}
}
void setHits(int val) {
base_euc_hits = constrain(val, 1, base_euc_steps);
if (cv1_dest != CV_DEST_EUC_HITS && cv2_dest != CV_DEST_EUC_HITS) {
pattern.SetHits(val);
}
}
void setCv1Dest(CvDestination dest) { cv1_dest = dest; }
void setCv2Dest(CvDestination dest) { cv2_dest = dest; }
CvDestination getCv1Dest() const { return cv1_dest; }
CvDestination getCv2Dest() const { return cv2_dest; }
// Getters (Get the BASE value for editing or cv modded value for display)
int getProbability(bool withCvMod = false) const { return withCvMod ? cvmod_probability : base_probability; }
int getDutyCycle(bool withCvMod = false) const { return withCvMod ? cvmod_duty_cycle : base_duty_cycle; }
int getOffset(bool withCvMod = false) const { return withCvMod ? cvmod_offset : base_offset; }
int getSwing(bool withCvMod = false) const { return withCvMod ? cvmod_swing : base_swing; }
int getClockMod(bool withCvMod = false) const { return pgm_read_word_near(&CLOCK_MOD[getClockModIndex(withCvMod)]); }
int getClockModIndex(bool withCvMod = false) const { return withCvMod ? cvmod_clock_mod_index : base_clock_mod_index; }
bool isCvModActive() const { return cv1_dest != CV_DEST_NONE || cv2_dest != CV_DEST_NONE; }
byte getSteps(bool withCvMod = false) const { return withCvMod ? pattern.GetSteps() : base_euc_steps; }
byte getHits(bool withCvMod = false) const { return withCvMod ? pattern.GetHits() : base_euc_hits; }
/**
* @brief Processes a clock tick and determines if the output should be high or low.
* Note: this method is called from an ISR and must be kept as simple as possible.
* @param tick The current clock tick count.
* @param output The output object to be modified.
*/
void processClockTick(uint32_t tick, DigitalOutput& output) {
const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[cvmod_clock_mod_index]);
// Conditionally apply swing on down beats.
uint16_t swing_pulses = 0;
if (_swing_pulse_amount > 0 && (tick / mod_pulses) % 2 == 1) {
swing_pulses = _swing_pulse_amount;
}
// Duty cycle high check logic
const uint32_t current_tick_offset = tick + _offset_pulses + swing_pulses;
if (!output.On()) {
// Step check
if (current_tick_offset % mod_pulses == 0) {
bool hit = cvmod_probability >= random(0, 100);
// Euclidean rhythm hit check
switch (pattern.NextStep()) {
case Pattern::REST: // Rest when active or fall back to probability
hit = false;
break;
case Pattern::HIT: // Hit if probability is true
hit &= true;
break;
}
if (hit) {
output.High();
}
}
}
// Duty cycle low check
const uint32_t duty_cycle_end_tick = tick + _duty_pulses + _offset_pulses + swing_pulses;
if (duty_cycle_end_tick % mod_pulses == 0) {
output.Low();
}
}
/**
* @brief Calculate and store cv modded values using bipolar mapping.
* Default to base value if not the current CV destination.
*
* @param cv1_val analog input reading for cv1
* @param cv2_val analog input reading for cv2
*
*/
void applyCvMod(int cv1_val, int cv2_val) {
// Note: This is optimized for cpu performance. This method is called
// from the main loop and stores the cv mod values. This reduces CPU
// cycles inside the internal clock interrupt, which is preferrable.
// However, if RAM usage grows too much, we have an opportunity to
// refactor this to store just the CV read values, and calculate the
// cv mod value per channel inside the getter methods by passing cv
// values. This would reduce RAM usage, but would introduce a
// significant CPU cost, which may have undesirable performance issues.
if (!isCvModActive()) {
cvmod_clock_mod_index = base_clock_mod_index;
cvmod_probability = base_clock_mod_index;
cvmod_duty_cycle = base_clock_mod_index;
cvmod_offset = base_clock_mod_index;
cvmod_swing = base_clock_mod_index;
return;
}
int dest_mod = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -(MOD_CHOICE_SIZE / 2), MOD_CHOICE_SIZE / 2);
cvmod_clock_mod_index = constrain(base_clock_mod_index + dest_mod, 0, 100);
int prob_mod = _calculateMod(CV_DEST_PROB, cv1_val, cv2_val, -50, 50);
cvmod_probability = constrain(base_probability + prob_mod, 0, 100);
int duty_mod = _calculateMod(CV_DEST_DUTY, cv1_val, cv2_val, -50, 50);
cvmod_duty_cycle = constrain(base_duty_cycle + duty_mod, 1, 99);
int offset_mod = _calculateMod(CV_DEST_OFFSET, cv1_val, cv2_val, -50, 50);
cvmod_offset = constrain(base_offset + offset_mod, 0, 99);
int swing_mod = _calculateMod(CV_DEST_SWING, cv1_val, cv2_val, -25, 25);
cvmod_swing = constrain(base_swing + swing_mod, 50, 95);
int step_mod = _calculateMod(CV_DEST_EUC_STEPS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN);
pattern.SetSteps(base_euc_steps + step_mod);
int hit_mod = _calculateMod(CV_DEST_EUC_HITS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN);
pattern.SetHits(base_euc_hits + hit_mod);
// After all cvmod values are updated, recalculate clock pulse modifiers.
_recalculatePulses();
}
private:
int _calculateMod(CvDestination dest, int cv1_val, int cv2_val, int min_range, int max_range) {
int mod1 = (cv1_dest == dest) ? map(cv1_val, -512, 512, min_range, max_range) : 0;
int mod2 = (cv2_dest == dest) ? map(cv2_val, -512, 512, min_range, max_range) : 0;
return mod1 + mod2;
}
void _recalculatePulses() {
const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[cvmod_clock_mod_index]);
_duty_pulses = max((long)((mod_pulses * (100L - cvmod_duty_cycle)) / 100L), 1L);
_offset_pulses = (long)((mod_pulses * (100L - cvmod_offset)) / 100L);
// Calculate the down beat swing amount.
if (cvmod_swing > 50) {
int shifted_swing = cvmod_swing - 50;
_swing_pulse_amount = (long)((mod_pulses * (100L - shifted_swing)) / 100L);
} else {
_swing_pulse_amount = 0;
}
}
// User-settable base values.
byte base_clock_mod_index;
byte base_probability;
byte base_duty_cycle;
byte base_offset;
byte base_swing;
byte base_euc_steps;
byte base_euc_hits;
// Base value with cv mod applied.
byte cvmod_clock_mod_index;
byte cvmod_probability;
byte cvmod_duty_cycle;
byte cvmod_offset;
byte cvmod_swing;
// CV mod configuration
CvDestination cv1_dest;
CvDestination cv2_dest;
// Euclidean pattern
Pattern pattern;
// Pre-calculated pulse values for ISR performance
uint16_t _duty_pulses;
uint16_t _offset_pulses;
uint16_t _swing_pulse_amount;
};
#endif // CHANNEL_H

424
firmware/Gravity/display.h Normal file
View File

@ -0,0 +1,424 @@
#ifndef DISPLAY_H
#define DISPLAY_H
#include <Arduino.h>
#include "app_state.h"
#include "save_state.h"
//
// UI Display functions for drawing the UI to the OLED display.
//
/*
* Font: velvetscreen.bdf 9pt
* https://stncrn.github.io/u8g2-unifont-helper/
* "%/0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
*/
const uint8_t TEXT_FONT[437] U8G2_FONT_SECTION("velvetscreen") PROGMEM =
"\64\0\2\2\3\3\2\3\4\5\5\0\0\5\0\5\0\0\221\0\0\1\230 \4\200\134%\11\255tT"
"R\271RI(\6\252\334T\31)\7\252\134bJ\12+\7\233\345\322J\0,\5\221T\4-\5\213"
"f\6.\5\211T\2/\6\244\354c\33\60\10\254\354T\64\223\2\61\7\353\354\222\254\6\62\11\254l"
"\66J*\217\0\63\11\254l\66J\32\215\4\64\10\254l\242\34\272\0\65\11\254l\206\336h$\0\66"
"\11\254\354T^\61)\0\67\10\254lF\216u\4\70\11\254\354TL*&\5\71\11\254\354TL;"
")\0:\6\231UR\0A\10\254\354T\34S\6B\11\254lV\34)\216\4C\11\254\354T\324\61"
")\0D\10\254lV\64G\2E\10\254l\206\36z\4F\10\254l\206^\71\3G\11\254\354TN"
"\63)\0H\10\254l\242\34S\6I\6\251T\206\0J\10\254\354k\231\24\0K\11\254l\242J\62"
"\225\1L\7\254lr{\4M\11\255t\362ZI\353\0N\11\255t\362TI\356\0O\10\254\354T"
"\64\223\2P\11\254lV\34)g\0Q\10\254\354T\264b\12R\10\254lV\34\251\31S\11\254\354"
"FF\32\215\4T\7\253dVl\1U\10\254l\242\63)\0V\11\255t\262Ne\312\21W\12\255"
"t\262J*\251.\0X\11\254l\242L*\312\0Y\12\255tr\252\63\312(\2Z\7\253df*"
"\7p\10\255\364V\266\323\2q\7\255\364\216\257\5r\10\253d\242\32*\2t\6\255t\376#w\11"
"\255\364V\245FN\13x\6\233dR\7\0\0\0\4\377\377\0";
/*
* Font: STK-L.bdf 36pt
* https://stncrn.github.io/u8g2-unifont-helper/
* "%/0123456789ABCDEFILNORSTUVXx"
*/
const uint8_t LARGE_FONT[766] U8G2_FONT_SECTION("stk-l") =
"\35\0\4\4\4\5\3\1\6\20\30\0\0\27\0\0\0\1\77\0\0\2\341%'\17;\226\261\245FL"
"\64B\214\30\22\223\220)Bj\10Q\232\214\42R\206\310\210\21d\304\30\32a\254\304\270!\0/\14"
"\272\272\275\311H\321g\343\306\1\60\37|\373\35CJT\20:fW\207\320\210\60\42\304\204\30D\247"
"\214\331\354\20\11%\212\314\0\61\24z\275\245a\244\12\231\71\63b\214\220q\363\377(E\6\62\33|"
"\373\35ShT\20:fl\344\14\211\231\301\306T\71\202#g\371\340\201\1\63\34|\373\35ShT"
"\20:fl\344@r\264\263\222\344,\215\35\42\241\6\225\31\0\64 |\373-!\203\206\214!\62\204"
"\314\220A#\10\215\30\65b\324\210Q\306\354\354\1\213\225\363\1\65\32|\373\15\25[\214\234/\10)"
"Y\61j\350\310Y\32;DB\15*\63\0\66\33}\33\236SiV\14;gt^\230Y\302\202\324"
"\71\273;EbM\252\63\0\67\23|\373\205\25\17R\316\207\344\350p\312\201#\347\35\0\70 |\373"
"\35ShT\20:f\331!\22D\310 :\205\206\10\11B\307\354\354\20\11\65\250\314\0\71\32|\373"
"\35ShT\20:fg\207H,Q\223r\276\30DB\15*\63\0A\26}\33\246r\247\322P\62"
"j\310\250\21\343\354\335\203\357\354w\3B$}\33\206Dj\226\214\42\61l\304\260\21\303F\14\33\61"
"\212\304\222MF\221\30v\316\236=\10\301b\11\0C\27}\33\236Si\226\20Bft\376O\211\215"
" Db\215\42$\0D\33}\33\206Dj\226\214\32\62l\304\260\21\343\354\177vl\304(\22K\324"
"$\2E\22|\373\205\17R\316KD\30\215\234_>x`\0F\20|\373\205\17R\316\227i\262\31"
"\71\377\22\0I\7s\333\204\77HL\15{\333\205\201\363\377\77|\360`\0N$}\33\6\201\346\314"
"\35;\206\12U\242D&\306\230\30cd\210\221!fF\230\31a(+\314\256\63\67\0O\26}\33"
"\236Si\226\214\32\61\316\376\277\33\61j\310\232Tg\0R\61\216;\6Ek\230\14#\61n\304\270"
"\21\343F\214\33\61n\304\60\22\243\210\60Q\224j\310\260\61\243\306\20\232\325\230QD\206\221\30\67b"
"\334\301\1S\42\216;\236c\211\226\220\42\61n\304\270\21c\307R\232,[\262\203\307\216\65h\16\25"
"\21&\253\320\0T\15}\33\206\17R\15\235\377\377\25\0U\21|\373\205a\366\377\237\215\30\64D\15"
"*\63\0V\26\177\371\205\221\366\377\313\21\343\206\220\42C\25\11r'\313\16\3X)~;\206\201\6"
"\217\221\30\66\204\20\31\42\244\206\14Cg\320$Q\222\6\315!\33\62\212\10\31BD\206\215 v\320"
"\302\1x\24\312\272\205A\206\216\220@c\212\224\31$S\14\262h\0\0\0\0\4\377\377\0";
#define play_icon_width 14
#define play_icon_height 14
static const unsigned char play_icon[28] PROGMEM = {
0x00, 0x00, 0x00, 0x00, 0x3C, 0x00, 0x7C, 0x00, 0xFC, 0x00, 0xFC, 0x03,
0xFC, 0x0F, 0xFC, 0x0F, 0xFC, 0x03, 0xFC, 0x00, 0x7C, 0x00, 0x3C, 0x00,
0x00, 0x00, 0x00, 0x00};
static const unsigned char pause_icon[28] PROGMEM = {
0x00, 0x00, 0x00, 0x00, 0x38, 0x0E, 0x38, 0x0E, 0x38, 0x0E, 0x38, 0x0E,
0x38, 0x0E, 0x38, 0x0E, 0x38, 0x0E, 0x38, 0x0E, 0x38, 0x0E, 0x38, 0x0E,
0x38, 0x0E, 0x00, 0x00};
// Constants for screen layout and fonts
constexpr uint8_t SCREEN_CENTER_X = 32;
constexpr uint8_t MAIN_TEXT_Y = 26;
constexpr uint8_t SUB_TEXT_Y = 40;
constexpr uint8_t VISIBLE_MENU_ITEMS = 3;
constexpr uint8_t MENU_ITEM_HEIGHT = 14;
constexpr uint8_t MENU_BOX_PADDING = 4;
constexpr uint8_t MENU_BOX_WIDTH = 64;
constexpr uint8_t CHANNEL_BOXES_Y = 50;
constexpr uint8_t CHANNEL_BOX_WIDTH = 18;
constexpr uint8_t CHANNEL_BOX_HEIGHT = 14;
// Helper function to draw centered text
void drawCenteredText(const char* text, int y, const uint8_t* font) {
gravity.display.setFont(font);
int textWidth = gravity.display.getStrWidth(text);
gravity.display.drawStr(SCREEN_CENTER_X - (textWidth / 2), y, text);
}
// Helper function to draw right-aligned text
void drawRightAlignedText(const char* text, int y) {
int textWidth = gravity.display.getStrWidth(text);
int drawX = (SCREEN_WIDTH - textWidth) - MENU_BOX_PADDING;
gravity.display.drawStr(drawX, y, text);
}
void drawMainSelection() {
gravity.display.setDrawColor(1);
const int tickSize = 3;
const int mainWidth = SCREEN_WIDTH / 2;
const int mainHeight = 49;
gravity.display.drawLine(0, 0, tickSize, 0);
gravity.display.drawLine(0, 0, 0, tickSize);
gravity.display.drawLine(mainWidth, 0, mainWidth - tickSize, 0);
gravity.display.drawLine(mainWidth, 0, mainWidth, tickSize);
gravity.display.drawLine(mainWidth, mainHeight, mainWidth, mainHeight - tickSize);
gravity.display.drawLine(mainWidth, mainHeight, mainWidth - tickSize, mainHeight);
gravity.display.drawLine(0, mainHeight, tickSize, mainHeight);
gravity.display.drawLine(0, mainHeight, 0, mainHeight - tickSize);
gravity.display.setDrawColor(2);
}
void drawMenuItems(String menu_items[], int menu_size) {
// Draw menu items
gravity.display.setFont(TEXT_FONT);
// Draw selected menu item box
int selectedBoxY = 0;
if (menu_size >= VISIBLE_MENU_ITEMS && app.selected_param == menu_size - 1) {
selectedBoxY = MENU_ITEM_HEIGHT * min(2, app.selected_param);
} else if (app.selected_param > 0) {
selectedBoxY = MENU_ITEM_HEIGHT;
}
int boxX = MENU_BOX_WIDTH + 1;
int boxY = selectedBoxY + 2;
int boxWidth = MENU_BOX_WIDTH - 1;
int boxHeight = MENU_ITEM_HEIGHT + 1;
if (app.editing_param) {
gravity.display.drawBox(boxX, boxY, boxWidth, boxHeight);
drawMainSelection();
} else {
gravity.display.drawFrame(boxX, boxY, boxWidth, boxHeight);
}
// Draw the visible menu items
int start_index = 0;
if (menu_size >= VISIBLE_MENU_ITEMS && app.selected_param == menu_size - 1) {
start_index = menu_size - VISIBLE_MENU_ITEMS;
} else if (app.selected_param > 0) {
start_index = app.selected_param - 1;
}
for (int i = 0; i < min(menu_size, VISIBLE_MENU_ITEMS); ++i) {
int idx = start_index + i;
drawRightAlignedText(menu_items[idx].c_str(), MENU_ITEM_HEIGHT * (i + 1) - 1);
}
}
// Visual indicators for main section of screen.
inline void solidTick() { gravity.display.drawBox(56, 4, 4, 4); }
inline void hollowTick() { gravity.display.drawBox(56, 4, 4, 4); }
// Display an indicator when swing percentage matches a musical note.
void swingDivisionMark() {
auto& ch = GetSelectedChannel();
switch (ch.getSwing()) {
case 58: // 1/32nd
case 66: // 1/16th
case 75: // 1/8th
solidTick();
break;
case 54: // 1/32nd tripplet
case 62: // 1/16th tripplet
case 71: // 1/8th tripplet
hollowTick();
break;
}
}
// Human friendly display value for save slot.
String displaySaveSlot(int slot) {
if (slot >= 0 && slot < MAX_SAVE_SLOTS / 2) {
return String("A") + String(slot + 1);
} else if (slot >= MAX_SAVE_SLOTS / 2 && slot <= MAX_SAVE_SLOTS) {
return String("B") + String(slot - (MAX_SAVE_SLOTS / 2) + 1);
}
}
// Main display functions
void DisplayMainPage() {
gravity.display.setFontMode(1);
gravity.display.setDrawColor(2);
gravity.display.setFont(TEXT_FONT);
// Display selected editable value
String mainText;
String subText;
switch (app.selected_param) {
case PARAM_MAIN_TEMPO:
// Serial MIDI is too unstable to display bpm in real time.
if (app.selected_source == Clock::SOURCE_EXTERNAL_MIDI) {
mainText = F("EXT");
} else {
mainText = String(gravity.clock.Tempo());
}
subText = F("BPM");
break;
case PARAM_MAIN_SOURCE:
mainText = F("EXT");
switch (app.selected_source) {
case Clock::SOURCE_INTERNAL:
mainText = F("INT");
subText = F("CLOCK");
break;
case Clock::SOURCE_EXTERNAL_PPQN_24:
subText = F("24 PPQN");
break;
case Clock::SOURCE_EXTERNAL_PPQN_4:
subText = F("4 PPQN");
break;
case Clock::SOURCE_EXTERNAL_MIDI:
subText = F("MIDI");
break;
}
break;
case PARAM_MAIN_PULSE:
mainText = F("OUT");
switch (app.selected_pulse) {
case Clock::PULSE_NONE:
subText = F("PULSE OFF");
break;
case Clock::PULSE_PPQN_24:
subText = F("24 PPQN PULSE");
break;
case Clock::PULSE_PPQN_4:
subText = F("4 PPQN PULSE");
break;
case Clock::PULSE_PPQN_1:
subText = F("1 PPQN PULSE");
break;
}
break;
case PARAM_MAIN_ENCODER_DIR:
mainText = F("DIR");
subText = app.selected_sub_param == 0 ? F("DEFAULT") : F("REVERSED");
break;
case PARAM_MAIN_SAVE_DATA:
case PARAM_MAIN_LOAD_DATA:
if (app.selected_sub_param == MAX_SAVE_SLOTS) {
mainText = F("x");
subText = F("BACK TO MAIN");
} else {
// Indicate currently active slot.
if (app.selected_sub_param == app.selected_save_slot) {
solidTick();
}
mainText = displaySaveSlot(app.selected_sub_param);
subText = (app.selected_param == PARAM_MAIN_SAVE_DATA)
? F("SAVE TO SLOT")
: F("LOAD FROM SLOT");
}
break;
case PARAM_MAIN_RESET_STATE:
if (app.selected_sub_param == 0) {
mainText = F("RST");
subText = F("RESET ALL");
} else {
mainText = F("x");
subText = F("BACK TO MAIN");
}
}
drawCenteredText(mainText.c_str(), MAIN_TEXT_Y, LARGE_FONT);
drawCenteredText(subText.c_str(), SUB_TEXT_Y, TEXT_FONT);
// Draw Main Page menu items
String menu_items[PARAM_MAIN_LAST] = {F("TEMPO"), F("SOURCE"), F("PULSE OUT"), F("ENCODER DIR"), F("SAVE"), F("LOAD"), F("RESET")};
drawMenuItems(menu_items, PARAM_MAIN_LAST);
}
void DisplayChannelPage() {
auto& ch = GetSelectedChannel();
gravity.display.setFontMode(1);
gravity.display.setDrawColor(2);
// Display selected editable value
String mainText;
String subText;
// When editing a param, just show the base value. When not editing show
// the value with cv mod.
bool withCvMod = !app.editing_param;
switch (app.selected_param) {
case PARAM_CH_MOD: {
int mod_value = ch.getClockMod(withCvMod);
if (mod_value > 1) {
mainText = F("/");
mainText += String(mod_value);
subText = F("DIVIDE");
} else {
mainText = F("x");
mainText += String(abs(mod_value));
subText = F("MULTIPLY");
}
break;
}
case PARAM_CH_PROB:
mainText = String(ch.getProbability(withCvMod)) + F("%");
subText = F("HIT CHANCE");
break;
case PARAM_CH_DUTY:
mainText = String(ch.getDutyCycle(withCvMod)) + F("%");
subText = F("PULSE WIDTH");
break;
case PARAM_CH_OFFSET:
mainText = String(ch.getOffset(withCvMod)) + F("%");
subText = F("SHIFT HIT");
break;
case PARAM_CH_SWING:
ch.getSwing() == 50
? mainText = F("OFF")
: mainText = String(ch.getSwing(withCvMod)) + F("%");
subText = "DOWN BEAT";
swingDivisionMark();
break;
case PARAM_CH_EUC_STEPS:
mainText = String(ch.getSteps(withCvMod));
subText = "EUCLID STEPS";
break;
case PARAM_CH_EUC_HITS:
mainText = String(ch.getHits(withCvMod));
subText = "EUCLID HITS";
break;
case PARAM_CH_CV1_DEST:
case PARAM_CH_CV2_DEST: {
mainText = (app.selected_param == PARAM_CH_CV1_DEST) ? F("CV1") : F("CV2");
switch ((app.selected_param == PARAM_CH_CV1_DEST) ? ch.getCv1Dest() : ch.getCv2Dest()) {
case CV_DEST_NONE:
subText = F("NONE");
break;
case CV_DEST_MOD:
subText = F("CLOCK MOD");
break;
case CV_DEST_PROB:
subText = F("PROBABILITY");
break;
case CV_DEST_DUTY:
subText = F("DUTY CYCLE");
break;
case CV_DEST_OFFSET:
subText = F("OFFSET");
break;
case CV_DEST_SWING:
subText = F("SWING");
break;
case CV_DEST_EUC_STEPS:
subText = F("EUCLID STEPS");
break;
case CV_DEST_EUC_HITS:
subText = F("EUCLID HITS");
break;
}
break;
}
}
drawCenteredText(mainText.c_str(), MAIN_TEXT_Y, LARGE_FONT);
drawCenteredText(subText.c_str(), SUB_TEXT_Y, TEXT_FONT);
// Draw Channel Page menu items
String menu_items[PARAM_CH_LAST] = {
F("MOD"), F("PROBABILITY"), F("DUTY"), F("OFFSET"), F("SWING"), F("EUCLID STEPS"),
F("EUCLID HITS"), F("CV1 MOD"), F("CV2 MOD")};
drawMenuItems(menu_items, PARAM_CH_LAST);
}
void DisplaySelectedChannel() {
int boxX = CHANNEL_BOX_WIDTH;
int boxY = CHANNEL_BOXES_Y;
int boxWidth = CHANNEL_BOX_WIDTH;
int boxHeight = CHANNEL_BOX_HEIGHT;
int textOffset = 7; // Half of font width
// Draw top and right side of frame.
gravity.display.drawHLine(1, boxY, SCREEN_WIDTH - 2);
gravity.display.drawVLine(SCREEN_WIDTH - 2, boxY, boxHeight);
for (int i = 0; i < Gravity::OUTPUT_COUNT + 1; i++) {
// Draw box frame or filled selected box.
gravity.display.setDrawColor(1);
(app.selected_channel == i)
? gravity.display.drawBox(i * boxWidth, boxY, boxWidth, boxHeight)
: gravity.display.drawVLine(i * boxWidth, boxY, boxHeight);
// Draw clock status icon or each channel number.
gravity.display.setDrawColor(2);
if (i == 0) {
gravity.display.setBitmapMode(1);
auto icon = gravity.clock.IsPaused() ? pause_icon : play_icon;
gravity.display.drawXBMP(2, boxY, play_icon_width, play_icon_height, icon);
} else {
gravity.display.setFont(TEXT_FONT);
gravity.display.setCursor((i * boxWidth) + textOffset, SCREEN_HEIGHT - 3);
gravity.display.print(i);
}
}
}
void UpdateDisplay() {
app.refresh_screen = false;
gravity.display.firstPage();
do {
if (app.selected_channel == 0) {
DisplayMainPage();
} else {
DisplayChannelPage();
}
// Global channel select UI.
DisplaySelectedChannel();
} while (gravity.display.nextPage());
}
#endif // DISPLAY_H

View File

@ -0,0 +1,87 @@
#ifndef EUCLIDEAN_H
#define EUCLIDEAN_H
#define MAX_PATTERN_LEN 32
struct PatternState {
uint8_t steps;
uint8_t hits;
};
const PatternState DEFAULT_PATTERN = {1, 1};
class Pattern {
public:
Pattern() {}
~Pattern() {}
enum Step : uint8_t {
REST,
HIT,
};
void Init(PatternState state) {
steps_ = constrain(state.steps, 1, MAX_PATTERN_LEN);
hits_ = constrain(state.hits, 1, steps_);
updatePattern();
}
PatternState GetState() const { return {steps_, hits_}; }
Step GetCurrentStep(byte i) {
if (i >= MAX_PATTERN_LEN) return REST;
return (pattern_bitmap_ & (1UL << i)) ? HIT : REST;
}
void SetSteps(int steps) {
steps_ = constrain(steps, 1, MAX_PATTERN_LEN);
hits_ = min(hits_, steps_);
updatePattern();
}
void SetHits(int hits) {
hits_ = constrain(hits, 1, steps_);
updatePattern();
}
void Reset() { step_index_ = 0; }
uint8_t GetSteps() const { return steps_; }
uint8_t GetHits() const { return hits_; }
uint8_t GetStepIndex() const { return step_index_; }
Step NextStep() {
if (steps_ == 0) return REST;
Step value = GetCurrentStep(step_index_);
step_index_ = (step_index_ < steps_ - 1) ? step_index_ + 1 : 0;
return value;
}
private:
uint8_t steps_ = 0;
uint8_t hits_ = 0;
volatile uint8_t step_index_ = 0;
uint32_t pattern_bitmap_ = 0;
// Update the euclidean rhythm pattern using bitmap
void updatePattern() {
pattern_bitmap_ = 0; // Clear the bitmap
if (steps_ == 0) return;
byte bucket = 0;
// Set the first bit (index 0) if it's a HIT
pattern_bitmap_ |= (1UL << 0);
for (int i = 1; i < steps_; i++) {
bucket += hits_;
if (bucket >= steps_) {
bucket -= steps_;
pattern_bitmap_ |= (1UL << i);
}
}
}
};
#endif

View File

@ -0,0 +1,154 @@
#include "save_state.h"
#include <EEPROM.h>
#include "app_state.h"
// Calculate the starting address for EepromData, leaving space for metadata.
static const int EEPROM_DATA_START_ADDR = sizeof(StateManager::Metadata);
StateManager::StateManager() : _isDirty(false), _lastChangeTime(0) {}
bool StateManager::initialize(AppState& app) {
if (_isDataValid()) {
// Load data from the transient slot.
return loadData(app, MAX_SAVE_SLOTS);
} else {
// EEPROM does not contain save data for this firmware & version.
// Initialize eeprom and save default patter to all save slots.
reset(app);
_saveMetadata();
// MAX_SAVE_SLOTS slot is reserved for transient state.
for (int i = 0; i <= MAX_SAVE_SLOTS; i++) {
app.selected_save_slot = i;
_saveState(app, i);
}
return false;
}
}
bool StateManager::loadData(AppState& app, byte slot_index) {
if (slot_index >= MAX_SAVE_SLOTS) return false;
_loadState(app, slot_index);
return true;
}
void StateManager::saveData(const AppState& app) {
if (app.selected_save_slot >= MAX_SAVE_SLOTS) return;
_saveState(app, app.selected_save_slot);
_isDirty = false;
}
void StateManager::update(const AppState& app) {
if (_isDirty && (millis() - _lastChangeTime > SAVE_DELAY_MS)) {
// MAX_SAVE_SLOTS slot is reserved for transient state.
_saveState(app, MAX_SAVE_SLOTS);
_isDirty = false;
}
}
void StateManager::reset(AppState& app) {
app.tempo = Clock::DEFAULT_TEMPO;
app.encoder_reversed = false;
app.selected_param = 0;
app.selected_channel = 0;
app.selected_source = Clock::SOURCE_INTERNAL;
app.selected_pulse = Clock::PULSE_PPQN_24;
app.selected_save_slot = 0;
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
app.channel[i].Init();
}
_isDirty = false;
}
void StateManager::markDirty() {
_isDirty = true;
_lastChangeTime = millis();
}
bool StateManager::_isDataValid() {
Metadata load_meta;
EEPROM.get(0, load_meta);
bool name_match = (strcmp(load_meta.sketch_name, SKETCH_NAME) == 0);
bool version_match = (load_meta.version == SKETCH_VERSION);
return name_match && version_match;
}
void StateManager::_saveState(const AppState& app, byte slot_index) {
if (app.selected_save_slot >= MAX_SAVE_SLOTS) return;
noInterrupts();
static EepromData save_data;
save_data.tempo = app.tempo;
save_data.encoder_reversed = app.encoder_reversed;
save_data.selected_param = app.selected_param;
save_data.selected_channel = app.selected_channel;
save_data.selected_source = static_cast<byte>(app.selected_source);
save_data.selected_pulse = static_cast<byte>(app.selected_pulse);
save_data.selected_save_slot = app.selected_save_slot;
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
const auto& ch = app.channel[i];
auto& save_ch = save_data.channel_data[i];
save_ch.base_clock_mod_index = ch.getClockModIndex(false);
save_ch.base_probability = ch.getProbability(false);
save_ch.base_duty_cycle = ch.getDutyCycle(false);
save_ch.base_offset = ch.getOffset(false);
save_ch.base_swing = ch.getSwing(false);
save_ch.base_euc_steps = ch.getSteps(false);
save_ch.base_euc_hits = ch.getHits(false);
save_ch.cv1_dest = static_cast<byte>(ch.getCv1Dest());
save_ch.cv2_dest = static_cast<byte>(ch.getCv2Dest());
}
int address = EEPROM_DATA_START_ADDR + (slot_index * sizeof(EepromData));
EEPROM.put(address, save_data);
interrupts();
}
void StateManager::_loadState(AppState& app, byte slot_index) {
noInterrupts();
static EepromData load_data;
int address = EEPROM_DATA_START_ADDR + (slot_index * sizeof(EepromData));
EEPROM.get(address, load_data);
// Restore app state from loaded data.
app.tempo = load_data.tempo;
app.encoder_reversed = load_data.encoder_reversed;
app.selected_param = load_data.selected_param;
app.selected_channel = load_data.selected_channel;
app.selected_source = static_cast<Clock::Source>(load_data.selected_source);
app.selected_pulse = static_cast<Clock::Pulse>(load_data.selected_pulse);
app.selected_save_slot = slot_index;
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
auto& ch = app.channel[i];
const auto& saved_ch_state = load_data.channel_data[i];
ch.setClockMod(saved_ch_state.base_clock_mod_index);
ch.setProbability(saved_ch_state.base_probability);
ch.setDutyCycle(saved_ch_state.base_duty_cycle);
ch.setOffset(saved_ch_state.base_offset);
ch.setSwing(saved_ch_state.base_swing);
ch.setSteps(saved_ch_state.base_euc_steps);
ch.setHits(saved_ch_state.base_euc_hits);
ch.setCv1Dest(static_cast<CvDestination>(saved_ch_state.cv1_dest));
ch.setCv2Dest(static_cast<CvDestination>(saved_ch_state.cv2_dest));
}
interrupts();
}
void StateManager::_saveMetadata() {
noInterrupts();
Metadata current_meta;
strcpy(current_meta.sketch_name, SKETCH_NAME);
current_meta.version = SKETCH_VERSION;
EEPROM.put(0, current_meta);
interrupts();
}

View File

@ -0,0 +1,83 @@
#ifndef SAVE_STATE_H
#define SAVE_STATE_H
#include <Arduino.h>
#include <gravity.h>
// Forward-declare AppState to avoid circular dependencies.
struct AppState;
// Define the constants for the current firmware.
const char SKETCH_NAME[] = "Gravity";
const byte SKETCH_VERSION = 7;
// Number of available save slots.
const byte MAX_SAVE_SLOTS = 10;
// Define the minimum amount of time between EEPROM writes.
static const unsigned long SAVE_DELAY_MS = 2000;
/**
* @brief Manages saving and loading of the application state to and from EEPROM.
* The number of user slots is defined by MAX_SAVE_SLOTS, and one additional slot
* is reseved for transient state to persist state between power cycles before
* state is explicitly saved to a user slot. Metadata is stored in the beginning
* of the memory space which stores firmware version information to validate that
* the data can be loaded into the current version of AppState.
*/
class StateManager {
public:
StateManager();
// Populate the AppState instance with values from EEPROM if they exist.
bool initialize(AppState& app);
// Load data from specified slot.
bool loadData(AppState& app, byte slot_index);
// Save data to specified slot.
void saveData(const AppState& app);
// Reset AppState instance back to default values.
void reset(AppState& app);
// Call from main loop, check if state has changed and needs to be saved.
void update(const AppState& app);
// Indicate that state has changed and we should save.
void markDirty();
// This struct holds the data that identifies the firmware version.
struct Metadata {
byte version;
char sketch_name[16];
};
struct ChannelState {
byte base_clock_mod_index;
byte base_probability;
byte base_duty_cycle;
byte base_offset;
byte base_swing;
byte base_euc_steps;
byte base_euc_hits;
byte cv1_dest; // Cast the CvDestination enum as a byte for storage
byte cv2_dest; // Cast the CvDestination enum as a byte for storage
};
// This struct holds all the parameters we want to save.
struct EepromData {
int tempo;
bool encoder_reversed;
byte selected_param;
byte selected_channel;
byte selected_source;
byte selected_pulse;
byte selected_save_slot;
ChannelState channel_data[Gravity::OUTPUT_COUNT];
};
private:
bool _isDataValid();
void _saveMetadata();
void _saveState(const AppState& app, byte slot_index);
void _loadState(AppState& app, byte slot_index);
bool _isDirty;
unsigned long _lastChangeTime;
};
#endif // SAVE_STATE_H