First commit. FLMNG and DubSiren are already here

This commit is contained in:
2025-10-04 23:16:21 +03:00
parent f3f285715b
commit 2c55dd46a6
4 changed files with 492 additions and 1 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
*/build/arduino.avr.nano

246
DubSiren/DubSiren.ino Normal file
View File

@ -0,0 +1,246 @@
// DubSiren firmware for Sitka Instruments WS-1.0
// by Oleksiy Hrachov
//
// Although the code designed to work on Sitka Instruments WS-1.0 synth, it should
// be pretty easy to adapt to run on other arduino/mozzi-based setups
//
// This code is licenced under GPL v3 or later
//ToDo:
//Transform Flamingo into DubSiren :)
//✅ Square oscilator
//✅ Square/Sine pitch LFO on switch
//✅ Filter
//⬜ Delay?
#include <Mozzi.h>
#include <MIDI.h>
#include <Oscil.h>
#include <MetaOscil.h>
#include <tables/sin2048_int8.h>
#include <tables/square_no_alias_2048_int8.h>
//#include <tables/square_analogue512_int8.h>
#include <StateVariable.h>
#include <ADSR.h>
#include <mozzi_midi.h>
#include <IntMap.h>
#include <OverSample.h>
#include <FixMath.h>
//Band limited oscilator tables for aliasing-free Meta Oscilator
#include <tables/BandLimited_SQUARE/512/square_max_90_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_101_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_122_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_138_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_154_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_174_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_210_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_264_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_327_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_431_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_546_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_744_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_910_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_1170_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_1638_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_2730_at_16384_512_int8.h>
#include <tables/BandLimited_SQUARE/512/square_max_8192_at_16384_512_int8.h>
Oscil <SQUARE_MAX_90_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq90(SQUARE_MAX_90_AT_16384_512_DATA);
Oscil <SQUARE_MAX_101_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq101(SQUARE_MAX_101_AT_16384_512_DATA);
Oscil <SQUARE_MAX_122_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq122(SQUARE_MAX_122_AT_16384_512_DATA);
Oscil <SQUARE_MAX_138_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq138(SQUARE_MAX_138_AT_16384_512_DATA);
Oscil <SQUARE_MAX_154_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq154(SQUARE_MAX_154_AT_16384_512_DATA);
Oscil <SQUARE_MAX_174_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq174(SQUARE_MAX_174_AT_16384_512_DATA);
Oscil <SQUARE_MAX_210_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq210(SQUARE_MAX_210_AT_16384_512_DATA);
Oscil <SQUARE_MAX_264_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq264(SQUARE_MAX_264_AT_16384_512_DATA);
Oscil <SQUARE_MAX_327_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq327(SQUARE_MAX_327_AT_16384_512_DATA);
Oscil <SQUARE_MAX_431_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq431(SQUARE_MAX_431_AT_16384_512_DATA);
Oscil <SQUARE_MAX_546_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq546(SQUARE_MAX_546_AT_16384_512_DATA);
Oscil <SQUARE_MAX_744_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq744(SQUARE_MAX_744_AT_16384_512_DATA);
Oscil <SQUARE_MAX_910_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq910(SQUARE_MAX_910_AT_16384_512_DATA);
Oscil <SQUARE_MAX_1170_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq1170(SQUARE_MAX_1170_AT_16384_512_DATA);
Oscil <SQUARE_MAX_1638_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq1638(SQUARE_MAX_1638_AT_16384_512_DATA);
Oscil <SQUARE_MAX_2730_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq2730(SQUARE_MAX_2730_AT_16384_512_DATA);
Oscil <SQUARE_MAX_8192_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE> aSq8192(SQUARE_MAX_8192_AT_16384_512_DATA);
MetaOscil<SQUARE_MAX_90_AT_16384_512_NUM_CELLS, MOZZI_AUDIO_RATE, 16> aSquare {&aSq90, &aSq101, &aSq122, &aSq138, &aSq154, &aSq174, &aSq210, &aSq264, &aSq327, &aSq431, &aSq546, &aSq744, &aSq1170, &aSq1638, &aSq2730, &aSq8192};
//Settings
const int pitchSubSteps = 32; //set how many steps are there between semitones. set to 1 to quantize to semitones
const int driveAmount = 450;
#define MIDI_CHANNEL MIDI_CHANNEL_OMNI
#define MOZZI_CONTROL_RATE 1024
//Hardware Definitions
#define Knob1 A6 //LFO Frequency
#define Knob2 A4 //LFO Intensity
#define Knob3 A2 //LPF Resonance
#define Knob4 A0 //LPF Cutoff
#define KnobA A5 //Attack
#define KnobDR A3 //Decay and Release
#define KnobS A1 //Sustain
#define CVIn A7 //CV input and Pitch knob
#define GateIn 10
#define EnvSwitch 11
#define DroneSwitch 12
#define LED 5
#define MOZZI_ANALOG_READ_RESOLUTION 10
MIDI_CREATE_DEFAULT_INSTANCE();
IntMap kMapNote( 0, 4095, 24 * pitchSubSteps, 84 * pitchSubSteps );
IntMap kMapLFOSpeed( 0, 1023, 500, 20000 );
IntMap kMapFreqMod( 0, 1023, 0, 1023 );
IntMap kMapResonance( 0, 1023, 200, 1 );
IntMap kMapCutoff( 0, 1023, 60, 3600 );
IntMap kMapAttack( 0, 1023, 0, 80 );
IntMap kMapDecayRelease( 0, 1023, 8, 160 );
IntMap kMapSustain( 0, 1023, 0, 255 );
//Oscil<SQUARE_ANALOGUE512_NUM_CELLS, MOZZI_AUDIO_RATE> aSquare(SQUARE_ANALOGUE512_DATA);
Oscil<SQUARE_NO_ALIAS_2048_NUM_CELLS, MOZZI_CONTROL_RATE> kSquareLFO(SQUARE_NO_ALIAS_2048_DATA);
Oscil<SIN2048_NUM_CELLS, MOZZI_CONTROL_RATE> kSineLFO(SIN2048_DATA);
ADSR <MOZZI_CONTROL_RATE, MOZZI_CONTROL_RATE> envelope;
StateVariable <LOWPASS> lpf;
OverSample <unsigned int, 2> kOverSamplePitch;
//Global variables
byte gain;
bool MIDINotePlaying;
bool gateIsHigh = false;
float noteFreq;
void MIDINoteOn(byte channel, byte note, byte velocity) {
noteFreq = mtof((int) note);
envelope.noteOn();
MIDINotePlaying = true;
digitalWrite(LED, LOW);
}
void MIDINoteOff(byte channel, byte note, byte velocity) {
envelope.noteOff();
digitalWrite(LED, HIGH);
}
long softClip(long input) {
int threshold = 2048;
if (input < -threshold) {
return -threshold + (input + threshold) / 4;
} else if (input > threshold) {
return threshold + (input - threshold) / 4;
} else {
return input;
}
}
void setup(){
pinMode(LED, OUTPUT);
pinMode(GateIn, INPUT_PULLUP);
pinMode(EnvSwitch, INPUT_PULLUP);
pinMode(DroneSwitch, INPUT_PULLUP);
MIDI.setHandleNoteOn(MIDINoteOn);
MIDI.setHandleNoteOff(MIDINoteOff);
MIDI.begin(MIDI_CHANNEL);
aSquare.setCutoffFreqs(90, 101, 122, 138, 154, 174, 210, 264, 327, 431, 546, 744, 1170, 1638, 2730, 8192);
startMozzi();
envelope.setAttackLevel(255);
digitalWrite(LED, HIGH);
}
void updateControl(){
//Get Control Values
int CVInVal = mozziAnalogRead(CVIn);
int knob1Val = mozziAnalogRead(Knob1);
int knob2Val = mozziAnalogRead(Knob2);
int knob3Val = mozziAnalogRead(Knob3);
int knob4Val = mozziAnalogRead(Knob4);
int knobAVal = mozziAnalogRead(KnobA);
int knobDRVal = mozziAnalogRead(KnobDR);
int knobSVal = mozziAnalogRead(KnobS);
bool droneSwitchVal = digitalRead(DroneSwitch);
bool envSwitchVal = digitalRead(EnvSwitch);
bool gateInVal = !digitalRead(GateIn);
//Remap the values and assign to parameter
float LFOSpeed = kMapLFOSpeed(knob1Val) / 100;
float expLFOSpeed = (float) LFOSpeed * LFOSpeed / 800000;
float freqMod = (float) kMapFreqMod(knob2Val) / 1023;
float modSpeed = LFOSpeed;
int resonance = kMapResonance(knob3Val);
int cutoff = kMapCutoff(knob4Val);
//Set pitch and play notes on trigger
if (!MIDINotePlaying) {
int oversampledCVInVal = kOverSamplePitch.next(CVInVal);
noteFreq = mtof((float) kMapNote(oversampledCVInVal) / pitchSubSteps);
//noteFreq = mtof((float) kMapNote(CVInVal << 2) / pitchSubSteps);
digitalWrite(LED, !gateInVal);
if (gateInVal && !gateIsHigh) {
gateIsHigh = true;
envelope.noteOn();
} else if (!gateInVal && gateIsHigh) {
gateIsHigh = false;
envelope.noteOff();
}
} else if (MIDINotePlaying && !envelope.playing()) {
MIDINotePlaying = false;
}
//Update Filter settings
lpf.setResonance(resonance);
lpf.setCentreFreq(cutoff);
//Update Envelope Settings
int attackTime = kMapAttack(knobAVal);
int decayReleaseTime = kMapDecayRelease(knobDRVal);
int sustainLevel = kMapSustain(knobSVal);
envelope.setDecayLevel(sustainLevel);
envelope.setTimes(attackTime, decayReleaseTime, 30000, decayReleaseTime); //30000 is so the note will sustain 30 seconds unless a noteOff comes
//LFO stuff
//Set oscillator frequencies
kSquareLFO.setFreq(modSpeed);
kSineLFO.setFreq(modSpeed);
int LFOValue;
if(envSwitchVal) {
LFOValue = kSquareLFO.next()-127; //-109 to bring the rangt to ~ 0-192
} else {
LFOValue = kSineLFO.next()-127;
}
//Set Oscilator Frequency
float oscFreq = noteFreq - noteFreq * LFOValue * freqMod * 3 / 256;
//UFix<16,16> oscFreq =
aSquare.setFreq(oscFreq);
envelope.update();
int env = envelope.next();
if(!droneSwitchVal) {
gain = env;
} else {
gain = 255;
}
MIDI.read();
}
AudioOutput updateAudio(){
long signal = aSquare.next();
signal = lpf.next(signal); //filter
signal = (signal * gain); //envelope
//signal = softClip((signal * (127 + driveAmount)) >> 8); //overdrive
return MonoOutput::fromNBit(17, signal).clip();
}
void loop(){
audioHook();
}

238
FLMNG/FLMNG.ino Normal file
View File

@ -0,0 +1,238 @@
// 2 Operator FM Synth firmware for Sitka Instruments WS-1.0
// by Oleksiy Hrachov
//
// Code is partly based on Knob_LightLevel_x2_FMSynth example from Mozzi Library
//
// Although the code designed to work on Sitka Instruments WS-1.0 synth, it should
// be pretty easy to adapt to run on other arduino/mozzi-based setups
//
// This code is licenced under GPL v3 or later
//ToDo:
//test how accurate and fast oversampling is
//smooth harmonics knob?
//rework LFO/Intensity so when LFO rate is 0, intensidy doesn't depend on its phase
#include <Mozzi.h>
#include <MIDI.h>
#include <Oscil.h>
#include <tables/sin2048_int8.h>
#include <tables/square_no_alias_2048_int8.h>
#include <tables/saw2048_int8.h>
#include <tables/whitenoise8192_int8.h>
#include <Smooth.h>
#include <ADSR.h>
#include <mozzi_midi.h>
#include <IntMap.h>
#include <OverSample.h>
//Settings
const int pitchSubSteps = 16; //set how many steps are there between semitones. set to 1 to quantize to semitones
const int driveAmount = 350;
const bool oversamplingEnabled = false; //makes V/OCT tracking more precise, but adds a little portamento
#define MIDI_CHANNEL 1 //MIDI_CHANNEL_OMNI
#define MOZZI_CONTROL_RATE 1024
//Hardware Definitions
#define Knob1 A6 //Intensity
#define Knob2 A4 //Modulator frequency ratio/Harmonics
#define Knob3 A2 //LFO Frequency
#define Knob4 A0 //LFO Shape
#define KnobA A5 //Attack
#define KnobDR A3 //Decay and Release
#define KnobS A1 //Sustain
#define CVIn A7 //CV input and Pitch knob
#define GateIn 10
#define EnvSwitch 11
#define DroneSwitch 12
#define LED 5
#define MOZZI_ANALOG_READ_RESOLUTION 10
MIDI_CREATE_DEFAULT_INSTANCE();
IntMap kMapCarrierNote( 0, 4095, 24 * pitchSubSteps, 84 * pitchSubSteps );
IntMap kMapIntensity( 0, 1023, 10, 350 );
IntMap kMapHarmonics( 0, 1023, 1, 40 );
IntMap kMapLFOSpeed( 0, 1023, 1, 10000 );
IntMap kMapAttack( 0, 1023, 0, 80 );
IntMap kMapDecayRelease( 0, 1023, 8, 160 );
IntMap kMapSustain( 0, 1023, 0, 255 );
Oscil<SIN2048_NUM_CELLS, MOZZI_AUDIO_RATE> aCarrier(SIN2048_DATA);
Oscil<SIN2048_NUM_CELLS, MOZZI_AUDIO_RATE> aModulator(SIN2048_DATA);
Oscil<SIN2048_NUM_CELLS, MOZZI_CONTROL_RATE> kSineLFO(SIN2048_DATA);
Oscil<SQUARE_NO_ALIAS_2048_NUM_CELLS, MOZZI_CONTROL_RATE> kSquareLFO(SQUARE_NO_ALIAS_2048_DATA);
Oscil<SAW2048_NUM_CELLS, MOZZI_CONTROL_RATE> kSawLFO(SAW2048_DATA);
Oscil<WHITENOISE8192_NUM_CELLS, MOZZI_CONTROL_RATE> kNoiseLFO(WHITENOISE8192_DATA);
ADSR <MOZZI_CONTROL_RATE, MOZZI_CONTROL_RATE> envelope;
Smooth <long> aSmoothIntensity(0.95f);
OverSample <unsigned int, 2> kOverSamplePitch;
//Global variables
byte gain;
bool MIDINotePlaying;
bool gateIsHigh = false;
float carrierFreq;
long FMIntensity; // carries control info from updateControl to updateAudio
void MIDINoteOn(byte channel, byte note, byte velocity) {
carrierFreq = mtof((int) note);
envelope.noteOn();
MIDINotePlaying = true;
digitalWrite(LED, LOW);
}
void MIDINoteOff(byte channel, byte note, byte velocity) {
envelope.noteOff();
digitalWrite(LED, HIGH);
}
long softClip(long input) {
int threshold = 2048;
if (input < -threshold) {
return -threshold + (input + threshold) / 4;
} else if (input > threshold) {
return threshold + (input - threshold) / 4;
} else {
return input;
}
}
void setup(){
pinMode(LED, OUTPUT);
pinMode(GateIn, INPUT_PULLUP);
pinMode(EnvSwitch, INPUT_PULLUP);
pinMode(DroneSwitch, INPUT_PULLUP);
MIDI.setHandleNoteOn(MIDINoteOn);
MIDI.setHandleNoteOff(MIDINoteOff);
MIDI.begin(MIDI_CHANNEL);
startMozzi();
envelope.setAttackLevel(255);
digitalWrite(LED, HIGH);
}
void updateControl(){
//Get Control Values
int CVInVal = mozziAnalogRead(CVIn);
int knob1Val = mozziAnalogRead(Knob1);
int knob2Val = mozziAnalogRead(Knob2);
int knob3Val = mozziAnalogRead(Knob3);
int knob4Val = mozziAnalogRead(Knob4);
int knobAVal = mozziAnalogRead(KnobA);
int knobDRVal = mozziAnalogRead(KnobDR);
int knobSVal = mozziAnalogRead(KnobS);
bool droneSwitchVal = digitalRead(DroneSwitch);
bool envSwitchVal = digitalRead(EnvSwitch);
bool gateInVal = !digitalRead(GateIn);
//Remap the values and assign to parameter
int intensity = kMapIntensity(knob1Val);
int harmonics = kMapHarmonics(knob2Val);
int LFOSpeed = kMapLFOSpeed(knob3Val);
float expLFOSpeed = (float) LFOSpeed * LFOSpeed / 400000;
float modSpeed = expLFOSpeed;
//Set pitch and play notes on trigger
if (!MIDINotePlaying) {
if (oversamplingEnabled) {
int oversampledCVInVal = kOverSamplePitch.next(CVInVal);
carrierFreq = mtof((float) kMapCarrierNote(oversampledCVInVal) / pitchSubSteps);
} else {
carrierFreq = mtof((float) kMapCarrierNote(CVInVal << 2) / pitchSubSteps);
}
digitalWrite(LED, !gateInVal);
if (gateInVal && !gateIsHigh) {
gateIsHigh = true;
envelope.noteOn();
} else if (!gateInVal && gateIsHigh) {
gateIsHigh = false;
envelope.noteOff();
}
} else if (MIDINotePlaying && !envelope.playing()) {
MIDINotePlaying = false;
}
//Update Envelope Settings
int attackTime = kMapAttack(knobAVal);
int decayReleaseTime = kMapDecayRelease(knobDRVal);
int sustainLevel = kMapSustain(knobSVal);
envelope.setDecayLevel(sustainLevel);
envelope.setTimes(attackTime, decayReleaseTime, 30000, decayReleaseTime); //30000 is so the note will sustain 30 seconds unless a noteOff comes
//Calculate the modulation frequency
int FMmodFreq = carrierFreq * harmonics;
//Set oscillator frequencies
aCarrier.setFreq(carrierFreq);
aModulator.setFreq(FMmodFreq);
kSineLFO.setFreq(modSpeed);
kSquareLFO.setFreq(modSpeed);
kSawLFO.setFreq(modSpeed);
kNoiseLFO.setFreq(modSpeed/4096);
envelope.update();
int sineLFOLevel;
int squareLFOLevel;
int sawLFOLevel;
int noiseLFOLevel;
if (knob4Val < 255) {
sineLFOLevel = 255 - knob4Val;
squareLFOLevel = knob4Val;
sawLFOLevel = 0;
noiseLFOLevel = 0;
} else if (knob4Val < 511) {
sineLFOLevel = 0;
squareLFOLevel = 511 - knob4Val;
sawLFOLevel = knob4Val - 255;
noiseLFOLevel = 0;
} else if (knob4Val < 767) {
sineLFOLevel = 0;
squareLFOLevel = 0;
sawLFOLevel = 767 - knob4Val;
noiseLFOLevel = knob4Val - 511;
} else {
sineLFOLevel = 0;
squareLFOLevel = 0;
sawLFOLevel = 0;
noiseLFOLevel = 255;
}
int shapedLFO = (kSineLFO.next() * sineLFOLevel +
kSquareLFO.next() * squareLFOLevel +
kSawLFO.next() * sawLFOLevel +
kNoiseLFO.next() * noiseLFOLevel)>>8;
int env = envelope.next();
int intensityEnv;
if(envSwitchVal) {
intensityEnv = env*3;
} else {
intensityEnv = 1;
}
FMIntensity = ((long)(intensity + intensityEnv) * (shapedLFO+128))>>8; //(shapedLFO+128))>>16; //(kSineLFO.next()+128))>>8;
if(!droneSwitchVal) {
gain = env;
} else {
gain = 255;
}
MIDI.read();
}
AudioOutput updateAudio(){
long modulation = aSmoothIntensity.next(FMIntensity) * aModulator.next();
long signal = (aCarrier.phMod(modulation) * gain) >> 8; //envelope
signal = softClip((signal * (127 + driveAmount)) >> 8); //overdrive
return MonoOutput::from8Bit(signal);
}
void loop(){
audioHook();
}

View File

@ -1,3 +1,9 @@
# WS-1.0-Firmwares
Collection of firmwares for WS-1.0 Arduino-based Synthesizer
Collection of firmwares for WS-1.0 Arduino-based Synthesizer
## FLMNG
2-operator FM synth with LFO mapped to FM intensity
## DubSiren
Simple synth for creating dub-style sirens: square wave oscillator, sine or square wave LFO mapped to oscillator pitch, resonant filter.