416 lines
10 KiB
C++
Executable File
416 lines
10 KiB
C++
Executable File
/*!
|
|
* @file uClock.cpp
|
|
* Project BPM clock generator for Arduino
|
|
* @brief A Library to implement BPM clock tick calls using hardware interruption. Supported and tested on AVR boards(ATmega168/328, ATmega16u4/32u4 and ATmega2560) and ARM boards(RPI2040, Teensy, Seedstudio XIAO M0 and ESP32)
|
|
* @version 2.2.1
|
|
* @author Romulo Silva
|
|
* @date 10/06/2017
|
|
* @license MIT - (c) 2024 - Romulo Silva - contact@midilab.co
|
|
*
|
|
* 2025-06-30 - https://github.com/awonak/uClock/tree/picoClock
|
|
* Modified by awonak to remove all unused sync callback
|
|
* methods and associated variables to dramatically reduce
|
|
* memory usage.
|
|
* See: https://github.com/midilab/uClock/issues/58
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
#include "uClock.h"
|
|
#include "uClock/platforms/avr.h"
|
|
|
|
//
|
|
// Platform specific timer setup/control
|
|
//
|
|
// initTimer(uint32_t us_interval) and setTimer(uint32_t us_interval)
|
|
// are called from architecture specific module included at the
|
|
// header of this file
|
|
void uclockInitTimer()
|
|
{
|
|
// begin at 120bpm
|
|
initTimer(uClock.bpmToMicroSeconds(120.00));
|
|
}
|
|
|
|
void setTimerTempo(float bpm)
|
|
{
|
|
setTimer(uClock.bpmToMicroSeconds(bpm));
|
|
}
|
|
|
|
namespace umodular { namespace clock {
|
|
|
|
static inline uint32_t phase_mult(uint32_t val)
|
|
{
|
|
return (val * PHASE_FACTOR) >> 8;
|
|
}
|
|
|
|
static inline uint32_t clock_diff(uint32_t old_clock, uint32_t new_clock)
|
|
{
|
|
if (new_clock >= old_clock) {
|
|
return new_clock - old_clock;
|
|
} else {
|
|
return new_clock + (4294967295 - old_clock);
|
|
}
|
|
}
|
|
|
|
uClockClass::uClockClass()
|
|
{
|
|
tempo = 120;
|
|
start_timer = 0;
|
|
last_interval = 0;
|
|
sync_interval = 0;
|
|
clock_state = PAUSED;
|
|
clock_mode = INTERNAL_CLOCK;
|
|
resetCounters();
|
|
|
|
onOutputPPQNCallback = nullptr;
|
|
onSync24Callback = nullptr;
|
|
onClockStartCallback = nullptr;
|
|
onClockStopCallback = nullptr;
|
|
// initialize reference data
|
|
calculateReferencedata();
|
|
}
|
|
|
|
void uClockClass::init()
|
|
{
|
|
if (ext_interval_buffer == nullptr)
|
|
setExtIntervalBuffer(1);
|
|
|
|
uclockInitTimer();
|
|
// first interval calculus
|
|
setTempo(tempo);
|
|
}
|
|
|
|
uint32_t uClockClass::bpmToMicroSeconds(float bpm)
|
|
{
|
|
return (60000000.0f / (float)output_ppqn / bpm);
|
|
}
|
|
|
|
void uClockClass::calculateReferencedata()
|
|
{
|
|
mod_clock_ref = output_ppqn / input_ppqn;
|
|
mod_sync24_ref = output_ppqn / PPQN_24;
|
|
}
|
|
|
|
void uClockClass::setOutputPPQN(PPQNResolution resolution)
|
|
{
|
|
// dont allow PPQN lower than PPQN_4 for output clock (to avoid problems with mod_step_ref)
|
|
if (resolution < PPQN_4)
|
|
return;
|
|
|
|
ATOMIC(
|
|
output_ppqn = resolution;
|
|
calculateReferencedata();
|
|
)
|
|
}
|
|
|
|
void uClockClass::setInputPPQN(PPQNResolution resolution)
|
|
{
|
|
ATOMIC(
|
|
input_ppqn = resolution;
|
|
calculateReferencedata();
|
|
)
|
|
}
|
|
|
|
void uClockClass::start()
|
|
{
|
|
resetCounters();
|
|
start_timer = millis();
|
|
|
|
if (onClockStartCallback) {
|
|
onClockStartCallback();
|
|
}
|
|
|
|
if (clock_mode == INTERNAL_CLOCK) {
|
|
clock_state = STARTED;
|
|
} else {
|
|
clock_state = STARTING;
|
|
}
|
|
}
|
|
|
|
void uClockClass::stop()
|
|
{
|
|
clock_state = PAUSED;
|
|
start_timer = 0;
|
|
resetCounters();
|
|
if (onClockStopCallback) {
|
|
onClockStopCallback();
|
|
}
|
|
}
|
|
|
|
void uClockClass::pause()
|
|
{
|
|
if (clock_mode == INTERNAL_CLOCK) {
|
|
if (clock_state == PAUSED) {
|
|
start();
|
|
} else {
|
|
stop();
|
|
}
|
|
}
|
|
}
|
|
|
|
void uClockClass::setTempo(float bpm)
|
|
{
|
|
if (clock_mode == EXTERNAL_CLOCK) {
|
|
return;
|
|
}
|
|
|
|
if (bpm < MIN_BPM || bpm > MAX_BPM) {
|
|
return;
|
|
}
|
|
|
|
ATOMIC(
|
|
tempo = bpm
|
|
)
|
|
|
|
setTimerTempo(bpm);
|
|
}
|
|
|
|
float uClockClass::getTempo()
|
|
{
|
|
if (clock_mode == EXTERNAL_CLOCK) {
|
|
uint32_t acc = 0;
|
|
// wait the buffer to get full
|
|
if (ext_interval_buffer[ext_interval_buffer_size-1] == 0) {
|
|
return tempo;
|
|
}
|
|
for (uint8_t i=0; i < ext_interval_buffer_size; i++) {
|
|
acc += ext_interval_buffer[i];
|
|
}
|
|
if (acc != 0) {
|
|
return constrainBpm(freqToBpm(acc / ext_interval_buffer_size));
|
|
}
|
|
}
|
|
return tempo;
|
|
}
|
|
|
|
// for software timer implementation(fallback for no board support)
|
|
void uClockClass::run() {}
|
|
|
|
float inline uClockClass::freqToBpm(uint32_t freq)
|
|
{
|
|
return 60000000.0f / (float)(freq * input_ppqn);
|
|
}
|
|
|
|
float inline uClockClass::constrainBpm(float bpm)
|
|
{
|
|
return (bpm < MIN_BPM) ? MIN_BPM : ( bpm > MAX_BPM ? MAX_BPM : bpm );
|
|
}
|
|
|
|
void uClockClass::setClockMode(ClockMode tempo_mode)
|
|
{
|
|
clock_mode = tempo_mode;
|
|
}
|
|
|
|
uClockClass::ClockMode uClockClass::getClockMode()
|
|
{
|
|
return clock_mode;
|
|
}
|
|
|
|
void uClockClass::clockMe()
|
|
{
|
|
if (clock_mode == EXTERNAL_CLOCK) {
|
|
ATOMIC(
|
|
handleExternalClock()
|
|
)
|
|
}
|
|
}
|
|
|
|
void uClockClass::setExtIntervalBuffer(uint8_t buffer_size)
|
|
{
|
|
if (ext_interval_buffer != nullptr)
|
|
return;
|
|
|
|
// alloc once and forever policy
|
|
ext_interval_buffer_size = buffer_size;
|
|
ext_interval_buffer = (uint32_t*) malloc( sizeof(uint32_t) * ext_interval_buffer_size );
|
|
}
|
|
|
|
void uClockClass::resetCounters()
|
|
{
|
|
tick = 0;
|
|
int_clock_tick = 0;
|
|
mod_clock_counter = 0;
|
|
|
|
mod_sync24_counter = 0;
|
|
sync24_tick = 0;
|
|
|
|
ext_clock_tick = 0;
|
|
ext_clock_us = 0;
|
|
ext_interval_idx = 0;
|
|
|
|
for (uint8_t i=0; i < ext_interval_buffer_size; i++) {
|
|
ext_interval_buffer[i] = 0;
|
|
}
|
|
}
|
|
|
|
void uClockClass::handleExternalClock()
|
|
{
|
|
switch (clock_state) {
|
|
case PAUSED:
|
|
break;
|
|
|
|
case STARTING:
|
|
clock_state = STARTED;
|
|
ext_clock_us = micros();
|
|
break;
|
|
|
|
case STARTED:
|
|
uint32_t now_clock_us = micros();
|
|
last_interval = clock_diff(ext_clock_us, now_clock_us);
|
|
ext_clock_us = now_clock_us;
|
|
|
|
// external clock tick me!
|
|
ext_clock_tick++;
|
|
|
|
// accumulate interval incomming ticks data for getTempo() smooth reads on slave clock_mode
|
|
if(++ext_interval_idx >= ext_interval_buffer_size) {
|
|
ext_interval_idx = 0;
|
|
}
|
|
ext_interval_buffer[ext_interval_idx] = last_interval;
|
|
|
|
if (ext_clock_tick == 1) {
|
|
ext_interval = last_interval;
|
|
} else {
|
|
ext_interval = (((uint32_t)ext_interval * (uint32_t)PLL_X) + (uint32_t)(256 - PLL_X) * (uint32_t)last_interval) >> 8;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void uClockClass::handleTimerInt()
|
|
{
|
|
// track main input clock counter
|
|
if (mod_clock_counter == mod_clock_ref)
|
|
mod_clock_counter = 0;
|
|
|
|
// process sync signals first please...
|
|
if (mod_clock_counter == 0) {
|
|
|
|
if (clock_mode == EXTERNAL_CLOCK) {
|
|
// sync tick position with external tick clock
|
|
if ((int_clock_tick < ext_clock_tick) || (int_clock_tick > (ext_clock_tick + 1))) {
|
|
int_clock_tick = ext_clock_tick;
|
|
tick = int_clock_tick * mod_clock_ref;
|
|
mod_clock_counter = tick % mod_clock_ref;
|
|
}
|
|
|
|
uint32_t counter = ext_interval;
|
|
uint32_t now_clock_us = micros();
|
|
sync_interval = clock_diff(ext_clock_us, now_clock_us);
|
|
|
|
if (int_clock_tick <= ext_clock_tick) {
|
|
counter -= phase_mult(sync_interval);
|
|
} else {
|
|
if (counter > sync_interval) {
|
|
counter += phase_mult(counter - sync_interval);
|
|
}
|
|
}
|
|
|
|
// update internal clock timer frequency
|
|
float bpm = constrainBpm(freqToBpm(counter));
|
|
if (bpm != tempo) {
|
|
tempo = bpm;
|
|
setTimerTempo(bpm);
|
|
}
|
|
}
|
|
|
|
// internal clock tick me!
|
|
++int_clock_tick;
|
|
}
|
|
++mod_clock_counter;
|
|
|
|
// Sync24 callback
|
|
if (onSync24Callback) {
|
|
if (mod_sync24_counter == mod_sync24_ref)
|
|
mod_sync24_counter = 0;
|
|
if (mod_sync24_counter == 0) {
|
|
onSync24Callback(sync24_tick);
|
|
++sync24_tick;
|
|
}
|
|
++mod_sync24_counter;
|
|
}
|
|
|
|
// main PPQNCallback
|
|
if (onOutputPPQNCallback) {
|
|
onOutputPPQNCallback(tick);
|
|
++tick;
|
|
}
|
|
}
|
|
|
|
// elapsed time support
|
|
uint8_t uClockClass::getNumberOfSeconds(uint32_t time)
|
|
{
|
|
if ( time == 0 ) {
|
|
return time;
|
|
}
|
|
return ((_millis - time) / 1000) % SECS_PER_MIN;
|
|
}
|
|
|
|
uint8_t uClockClass::getNumberOfMinutes(uint32_t time)
|
|
{
|
|
if ( time == 0 ) {
|
|
return time;
|
|
}
|
|
return (((_millis - time) / 1000) / SECS_PER_MIN) % SECS_PER_MIN;
|
|
}
|
|
|
|
uint8_t uClockClass::getNumberOfHours(uint32_t time)
|
|
{
|
|
if ( time == 0 ) {
|
|
return time;
|
|
}
|
|
return (((_millis - time) / 1000) % SECS_PER_DAY) / SECS_PER_HOUR;
|
|
}
|
|
|
|
uint8_t uClockClass::getNumberOfDays(uint32_t time)
|
|
{
|
|
if ( time == 0 ) {
|
|
return time;
|
|
}
|
|
return ((_millis - time) / 1000) / SECS_PER_DAY;
|
|
}
|
|
|
|
uint32_t uClockClass::getNowTimer()
|
|
{
|
|
return _millis;
|
|
}
|
|
|
|
uint32_t uClockClass::getPlayTime()
|
|
{
|
|
return start_timer;
|
|
}
|
|
|
|
} } // end namespace umodular::clock
|
|
|
|
umodular::clock::uClockClass uClock;
|
|
|
|
volatile uint32_t _millis = 0;
|
|
|
|
//
|
|
// TIMER HANDLER
|
|
//
|
|
void uClockHandler()
|
|
{
|
|
// global timer counter
|
|
_millis = millis();
|
|
|
|
if (uClock.clock_state == uClock.STARTED) {
|
|
uClock.handleTimerInt();
|
|
}
|
|
}
|