Files
libGravity/firmware/Gravity/channel.h

288 lines
9.3 KiB
C++

/**
* @file channel.h
* @author Adam Wonak (https://github.com/awonak/)
* @brief Alt firmware version of Gravity by Sitka Instruments.
* @version 2.0.0
* @date 2025-08-17
*
* @copyright MIT - (c) 2025 - Adam Wonak - adam.wonak@gmail.com
*
*/
#ifndef CHANNEL_H
#define CHANNEL_H
#include <Arduino.h>
#include <libGravity.h>
#include "euclidean.h"
// Enums for CV Mod destination
enum CvDestination : uint8_t {
CV_DEST_NONE,
CV_DEST_MOD,
CV_DEST_PROB,
CV_DEST_DUTY,
CV_DEST_OFFSET,
CV_DEST_SWING,
CV_DEST_EUC_STEPS,
CV_DEST_EUC_HITS,
CV_DEST_LAST,
};
static const byte MOD_CHOICE_SIZE = 25;
// Negative numbers are multipliers, positive are divisors.
static const int CLOCK_MOD[MOD_CHOICE_SIZE] PROGMEM = {
// Divisors
128, 64, 32, 24, 16, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2,
// Internal Clock Unity (quarter note)
1,
// Multipliers
-2, -3, -4, -6, -8, -12, -16, -24};
// This represents the number of clock pulses for a 96 PPQN clock source
// that match the above div/mult mods.
static const int CLOCK_MOD_PULSES[MOD_CHOICE_SIZE] PROGMEM = {
// Divisor Pulses (96 * X)
12288, 6144, 3072, 2304, 1536, 1152, 1056, 960, 864, 768, 672, 576, 480, 384, 288, 192,
// Internal Clock Pulses
96,
// Multiplier Pulses (96 / X)
48, 32, 24, 16, 12, 8, 6, 4};
static const byte DEFAULT_CLOCK_MOD_INDEX = 16; // x1 or 96 PPQN.
static const byte PULSE_PPQN_24_CLOCK_MOD_INDEX = MOD_CHOICE_SIZE - 1;
static const byte PULSE_PPQN_4_CLOCK_MOD_INDEX = MOD_CHOICE_SIZE - 6;
static const byte PULSE_PPQN_1_CLOCK_MOD_INDEX = MOD_CHOICE_SIZE - 9;
class Channel {
public:
Channel() {
Init();
}
void Init() {
// Reset base values to their defaults
base_clock_mod_index = DEFAULT_CLOCK_MOD_INDEX;
base_probability = 100;
base_duty_cycle = 50;
base_offset = 0;
base_swing = 50;
cv1_dest = CV_DEST_NONE;
cv2_dest = CV_DEST_NONE;
pattern.Init(DEFAULT_PATTERN);
// Calcule the clock mod pulses on init.
recalculatePulses();
}
bool inline isCvModActive() const { return cv1_dest != CV_DEST_NONE || cv2_dest != CV_DEST_NONE; }
// Setters (Set the BASE value)
void setClockMod(int index) {
base_clock_mod_index = constrain(index, 0, MOD_CHOICE_SIZE - 1);
recalculatePulses();
}
void setProbability(int prob) {
base_probability = constrain(prob, 0, 100);
}
void setDutyCycle(int duty) {
base_duty_cycle = constrain(duty, 1, 99);
recalculatePulses();
}
void setOffset(int off) {
base_offset = constrain(off, 0, 99);
recalculatePulses();
}
void setSwing(int val) {
base_swing = constrain(val, 50, 95);
recalculatePulses();
}
// Euclidean
void setSteps(int val) {
pattern.SetSteps(val);
}
void setHits(int val) {
pattern.SetHits(val);
}
void setCv1Dest(CvDestination dest) {
cv1_dest = dest;
recalculatePulses();
}
void setCv2Dest(CvDestination dest) {
cv2_dest = dest;
recalculatePulses();
}
CvDestination getCv1Dest() const { return cv1_dest; }
CvDestination getCv2Dest() const { return cv2_dest; }
// Getters (Get the BASE value for editing or cv modded value for display)
int getProbability() const { return base_probability; }
int getDutyCycle() const { return base_duty_cycle; }
int getOffset() const { return base_offset; }
int getSwing() const { return base_swing; }
int getClockMod() const { return pgm_read_word_near(&CLOCK_MOD[getClockModIndex()]); }
int getClockModIndex() const { return base_clock_mod_index; }
byte getSteps() const { return pattern.GetSteps(); }
byte getHits() const { return pattern.GetHits(); }
// Getters that calculate the value with CV modulation applied.
int getClockModIndexWithMod(int cv1_val, int cv2_val) {
int clock_mod_index = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -(MOD_CHOICE_SIZE / 2), MOD_CHOICE_SIZE / 2);
return constrain(base_clock_mod_index + clock_mod_index, 0, MOD_CHOICE_SIZE - 1);
}
int getClockModWithMod(int cv1_val, int cv2_val) {
int clock_mod = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -(MOD_CHOICE_SIZE / 2), MOD_CHOICE_SIZE / 2);
return pgm_read_word_near(&CLOCK_MOD[getClockModIndexWithMod(cv1_val, cv2_val)]);
}
int getProbabilityWithMod(int cv1_val, int cv2_val) {
int prob_mod = _calculateMod(CV_DEST_PROB, cv1_val, cv2_val, -50, 50);
return constrain(base_probability + prob_mod, 0, 100);
}
int getDutyCycleWithMod(int cv1_val, int cv2_val) {
int duty_mod = _calculateMod(CV_DEST_DUTY, cv1_val, cv2_val, -50, 50);
return constrain(base_duty_cycle + duty_mod, 1, 99);
}
int getOffsetWithMod(int cv1_val, int cv2_val) {
int offset_mod = _calculateMod(CV_DEST_OFFSET, cv1_val, cv2_val, -50, 50);
return constrain(base_offset + offset_mod, 0, 99);
}
int getSwingWithMod(int cv1_val, int cv2_val) {
int swing_mod = _calculateMod(CV_DEST_SWING, cv1_val, cv2_val, -25, 25);
return constrain(base_swing + swing_mod, 50, 95);
}
byte getStepsWithMod(int cv1_val, int cv2_val) {
int step_mod = _calculateMod(CV_DEST_EUC_STEPS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN);
return constrain(pattern.GetSteps() + step_mod, 1, MAX_PATTERN_LEN);
}
byte getHitsWithMod(int cv1_val, int cv2_val) {
// The number of hits is dependent on the modulated number of steps.
byte modulated_steps = getStepsWithMod(cv1_val, cv2_val);
int hit_mod = _calculateMod(CV_DEST_EUC_HITS, cv1_val, cv2_val, 0, modulated_steps);
return constrain(pattern.GetHits() + hit_mod, 1, modulated_steps);
}
void toggleMute() { mute = !mute; }
/**
* @brief Processes a clock tick and determines if the output should be high or low.
* Note: this method is called from an ISR and must be kept as simple as possible.
* @param tick The current clock tick count.
* @param output The output object to be modified.
*/
void processClockTick(uint32_t tick, DigitalOutput& output) {
// Mute check
if (mute) {
output.Low();
return;
}
int cvmod_probability = base_probability;
if (cv1_dest == CV_DEST_PROB || cv2_dest == CV_DEST_PROB) {
cvmod_probability = getProbabilityWithMod(gravity.cv1.Read(), gravity.cv2.Read());
}
// Conditionally apply swing on down beats.
uint16_t swing_pulses = 0;
if (_swing_pulses > 0 && (tick / _mod_pulses) % 2 == 1) {
swing_pulses = _swing_pulses;
}
// Duty cycle high check logic
const uint32_t current_tick_offset = tick + _offset_pulses + swing_pulses;
if (!output.On()) {
// Step check
if (current_tick_offset % _mod_pulses == 0) {
bool hit = cvmod_probability >= random(0, 100);
// Euclidean rhythm hit check
switch (pattern.NextStep()) {
case Pattern::REST: // Rest when active or fall back to probability
hit = false;
break;
case Pattern::HIT: // Hit if probability is true
hit &= true;
break;
}
if (hit) {
output.High();
}
}
}
// Duty cycle low check
const uint32_t duty_cycle_end_tick = tick + _duty_pulses + _offset_pulses + swing_pulses;
if (duty_cycle_end_tick % _mod_pulses == 0) {
output.Low();
}
}
void recalculatePulses() {
int cv1 = gravity.cv1.Read();
int cv2 = gravity.cv2.Read();
int clock_mod_index = getClockModIndexWithMod(cv1, cv2);
int duty_cycle = getDutyCycleWithMod(cv1, cv2);
int offset = getOffsetWithMod(cv1, cv2);
int swing = getSwingWithMod(cv1, cv2);
_mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[clock_mod_index]);
_duty_pulses = max((long)((_mod_pulses * (100L - duty_cycle)) / 100L), 1L);
_offset_pulses = (long)((_mod_pulses * (100L - offset)) / 100L);
// Calculate the down beat swing amount.
if (swing > 50) {
int shifted_swing = swing - 50;
_swing_pulses = (long)((_mod_pulses * (100L - shifted_swing)) / 100L);
} else {
_swing_pulses = 0;
}
}
private:
int _calculateMod(CvDestination dest, int cv1_val, int cv2_val, int min_range, int max_range) {
int mod1 = (cv1_dest == dest) ? map(cv1_val, -512, 512, min_range, max_range) : 0;
int mod2 = (cv2_dest == dest) ? map(cv2_val, -512, 512, min_range, max_range) : 0;
return mod1 + mod2;
}
// User-settable base values.
byte base_clock_mod_index;
byte base_probability;
byte base_duty_cycle;
byte base_offset;
byte base_swing;
// CV mod configuration
CvDestination cv1_dest;
CvDestination cv2_dest;
// Euclidean pattern
Pattern pattern;
// Mute channel flag
bool mute;
// Pre-calculated pulse values for ISR performance
uint16_t _mod_pulses;
uint16_t _duty_pulses;
uint16_t _offset_pulses;
uint16_t _swing_pulses;
};
#endif // CHANNEL_H