Files
libGravity/examples/Gravity/channel.h

272 lines
9.9 KiB
C++

#ifndef CHANNEL_H
#define CHANNEL_H
#include <Arduino.h>
#include <gravity.h>
#include "euclidean.h"
// Enums for CV Mod destination
enum CvDestination : uint8_t {
CV_DEST_NONE,
CV_DEST_MOD,
CV_DEST_PROB,
CV_DEST_DUTY,
CV_DEST_OFFSET,
CV_DEST_SWING,
CV_DEST_EUC_STEPS,
CV_DEST_EUC_HITS,
CV_DEST_LAST,
};
static const byte MOD_CHOICE_SIZE = 21;
// Negative for multiply, positive for divide.
static const int CLOCK_MOD[MOD_CHOICE_SIZE] PROGMEM = {-24, -12, -8, -6, -4, -3, -2, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 24, 32, 64, 128};
// This represents the number of clock pulses for a 96 PPQN clock source that match the above div/mult mods.
static const int CLOCK_MOD_PULSES[MOD_CHOICE_SIZE] PROGMEM = {4, 8, 12, 16, 24, 32, 48, 96, 192, 288, 384, 480, 576, 1152, 672, 768, 1536, 2304, 3072, 6144, 12288};
class Channel {
public:
Channel() {
Init();
}
void Init() {
// Reset base values to their defaults
base_clock_mod_index = 7;
base_probability = 100;
base_duty_cycle = 50;
base_offset = 0;
base_swing = 50;
base_euc_steps = 1;
base_euc_hits = 1;
cvmod_clock_mod_index = base_clock_mod_index;
cvmod_probability = base_probability;
cvmod_duty_cycle = base_duty_cycle;
cvmod_offset = base_offset;
cvmod_swing = base_swing;
pattern.Init(DEFAULT_PATTERN);
// Calcule the clock mod pulses on init.
_recalculatePulses();
}
// Setters (Set the BASE value)
void setClockMod(int index) {
base_clock_mod_index = constrain(index, 0, MOD_CHOICE_SIZE - 1);
if (!isCvModActive()) {
cvmod_clock_mod_index = base_clock_mod_index;
_recalculatePulses();
}
}
void setProbability(int prob) {
base_probability = constrain(prob, 0, 100);
if (!isCvModActive()) {
cvmod_probability = base_probability;
_recalculatePulses();
}
}
void setDutyCycle(int duty) {
base_duty_cycle = constrain(duty, 1, 99);
if (!isCvModActive()) {
cvmod_duty_cycle = base_duty_cycle;
_recalculatePulses();
}
}
void setOffset(int off) {
base_offset = constrain(off, 0, 99);
if (!isCvModActive()) {
cvmod_offset = base_offset;
_recalculatePulses();
}
}
void setSwing(int val) {
base_swing = constrain(val, 50, 95);
if (!isCvModActive()) {
cvmod_swing = base_swing;
_recalculatePulses();
}
}
// Euclidean
void setSteps(int val) {
base_euc_steps = constrain(val, 1, MAX_PATTERN_LEN);
if (cv1_dest != CV_DEST_EUC_STEPS && cv2_dest != CV_DEST_EUC_STEPS) {
pattern.SetSteps(val);
}
}
void setHits(int val) {
base_euc_hits = constrain(val, 1, base_euc_steps);
if (cv1_dest != CV_DEST_EUC_HITS && cv2_dest != CV_DEST_EUC_HITS) {
pattern.SetHits(val);
}
}
void setCv1Dest(CvDestination dest) { cv1_dest = dest; }
void setCv2Dest(CvDestination dest) { cv2_dest = dest; }
CvDestination getCv1Dest() const { return cv1_dest; }
CvDestination getCv2Dest() const { return cv2_dest; }
// Getters (Get the BASE value for editing or cv modded value for display)
int getProbability(bool withCvMod = false) const { return withCvMod ? cvmod_probability : base_probability; }
int getDutyCycle(bool withCvMod = false) const { return withCvMod ? cvmod_duty_cycle : base_duty_cycle; }
int getOffset(bool withCvMod = false) const { return withCvMod ? cvmod_offset : base_offset; }
int getSwing(bool withCvMod = false) const { return withCvMod ? cvmod_swing : base_swing; }
int getClockMod(bool withCvMod = false) const { return pgm_read_word_near(&CLOCK_MOD[getClockModIndex(withCvMod)]); }
int getClockModIndex(bool withCvMod = false) const { return withCvMod ? cvmod_clock_mod_index : base_clock_mod_index; }
bool isCvModActive() const { return cv1_dest != CV_DEST_NONE || cv2_dest != CV_DEST_NONE; }
byte getSteps(bool withCvMod = false) const { return withCvMod ? pattern.GetSteps() : base_euc_steps; }
byte getHits(bool withCvMod = false) const { return withCvMod ? pattern.GetHits() : base_euc_hits; }
/**
* @brief Processes a clock tick and determines if the output should be high or low.
* Note: this method is called from an ISR and must be kept as simple as possible.
* @param tick The current clock tick count.
* @param output The output object to be modified.
*/
void processClockTick(uint32_t tick, DigitalOutput& output) {
const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[cvmod_clock_mod_index]);
// Conditionally apply swing on down beats.
uint16_t swing_pulses = 0;
if (_swing_pulse_amount > 0 && (tick / mod_pulses) % 2 == 1) {
swing_pulses = _swing_pulse_amount;
}
// Duty cycle high check logic
const uint32_t current_tick_offset = tick + _offset_pulses + swing_pulses;
if (!output.On()) {
// Step check
if (current_tick_offset % mod_pulses == 0) {
bool hit = cvmod_probability >= random(0, 100);
// Euclidean rhythm hit check
switch (pattern.NextStep()) {
case Pattern::REST: // Rest when active or fall back to probability
hit = false;
break;
case Pattern::HIT: // Hit if probability is true
hit &= true;
break;
}
if (hit) {
output.High();
}
}
}
// Duty cycle low check
const uint32_t duty_cycle_end_tick = tick + _duty_pulses + _offset_pulses + swing_pulses;
if (duty_cycle_end_tick % mod_pulses == 0) {
output.Low();
}
}
/**
* @brief Calculate and store cv modded values using bipolar mapping.
* Default to base value if not the current CV destination.
*
* @param cv1_val analog input reading for cv1
* @param cv2_val analog input reading for cv2
*
*/
void applyCvMod(int cv1_val, int cv2_val) {
// Note: This is optimized for cpu performance. This method is called
// from the main loop and stores the cv mod values. This reduces CPU
// cycles inside the internal clock interrupt, which is preferrable.
// However, if RAM usage grows too much, we have an opportunity to
// refactor this to store just the CV read values, and calculate the
// cv mod value per channel inside the getter methods by passing cv
// values. This would reduce RAM usage, but would introduce a
// significant CPU cost, which may have undesirable performance issues.
if (!isCvModActive()) {
cvmod_clock_mod_index = base_clock_mod_index;
cvmod_probability = base_clock_mod_index;
cvmod_duty_cycle = base_clock_mod_index;
cvmod_offset = base_clock_mod_index;
cvmod_swing = base_clock_mod_index;
return;
}
int dest_mod = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -10, 10);
cvmod_clock_mod_index = constrain(base_clock_mod_index + dest_mod, 0, 100);
int prob_mod = _calculateMod(CV_DEST_PROB, cv1_val, cv2_val, -50, 50);
cvmod_probability = constrain(base_probability + prob_mod, 0, 100);
int duty_mod = _calculateMod(CV_DEST_DUTY, cv1_val, cv2_val, -50, 50);
cvmod_duty_cycle = constrain(base_duty_cycle + duty_mod, 1, 99);
int offset_mod = _calculateMod(CV_DEST_OFFSET, cv1_val, cv2_val, -50, 50);
cvmod_offset = constrain(base_offset + offset_mod, 0, 99);
int swing_mod = _calculateMod(CV_DEST_SWING, cv1_val, cv2_val, -25, 25);
cvmod_swing = constrain(base_swing + swing_mod, 50, 95);
int step_mod = _calculateMod(CV_DEST_EUC_STEPS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN);
pattern.SetSteps(base_euc_steps + step_mod);
int hit_mod = _calculateMod(CV_DEST_EUC_HITS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN);
pattern.SetHits(base_euc_hits + hit_mod);
// After all cvmod values are updated, recalculate clock pulse modifiers.
_recalculatePulses();
}
private:
int _calculateMod(CvDestination dest, int cv1_val, int cv2_val, int min_range, int max_range) {
int mod1 = (cv1_dest == dest) ? map(cv1_val, -512, 512, min_range, max_range) : 0;
int mod2 = (cv2_dest == dest) ? map(cv2_val, -512, 512, min_range, max_range) : 0;
return mod1 + mod2;
}
void _recalculatePulses() {
const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[cvmod_clock_mod_index]);
_duty_pulses = max((long)((mod_pulses * (100L - cvmod_duty_cycle)) / 100L), 1L);
_offset_pulses = (long)((mod_pulses * (100L - cvmod_offset)) / 100L);
// Calculate the down beat swing amount.
if (cvmod_swing > 50) {
int shifted_swing = cvmod_swing - 50;
_swing_pulse_amount = (long)((mod_pulses * (100L - shifted_swing)) / 100L);
} else {
_swing_pulse_amount = 0;
}
}
// User-settable base values.
byte base_clock_mod_index;
byte base_probability;
byte base_duty_cycle;
byte base_offset;
byte base_swing;
byte base_euc_steps;
byte base_euc_hits;
// Base value with cv mod applied.
byte cvmod_clock_mod_index;
byte cvmod_probability;
byte cvmod_duty_cycle;
byte cvmod_offset;
byte cvmod_swing;
// CV mod configuration
CvDestination cv1_dest;
CvDestination cv2_dest;
// Euclidean pattern
Pattern pattern;
// Pre-calculated pulse values for ISR performance
uint16_t _duty_pulses;
uint16_t _offset_pulses;
uint16_t _swing_pulse_amount;
};
#endif // CHANNEL_H