/** * @file channel.h * @author Adam Wonak (https://github.com/awonak/) * @brief Alt firmware version of Gravity by Sitka Instruments. * @version 2.0.1 * @date 2025-07-04 * * @copyright MIT - (c) 2025 - Adam Wonak - adam.wonak@gmail.com * */ #ifndef CHANNEL_H #define CHANNEL_H #include #include #include "euclidean.h" // Enums for CV Mod destination enum CvDestination : uint8_t { CV_DEST_NONE, CV_DEST_MOD, CV_DEST_PROB, CV_DEST_DUTY, CV_DEST_OFFSET, CV_DEST_SWING, CV_DEST_EUC_STEPS, CV_DEST_EUC_HITS, CV_DEST_LAST, }; static const byte MOD_CHOICE_SIZE = 25; // Negative numbers are multipliers, positive are divisors. static const int CLOCK_MOD[MOD_CHOICE_SIZE] PROGMEM = { // Multipliers -24, -16, -12, -8, -6, -4, -3, -2, // Internal Clock Unity 1, // Divisors 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 24, 32, 64, 128}; // This represents the number of clock pulses for a 96 PPQN clock source // that match the above div/mult mods. static const int CLOCK_MOD_PULSES[MOD_CHOICE_SIZE] PROGMEM = { // Multiplier Pulses (96 / X) 4, 6, 8, 12, 16, 24, 32, 48, // Internal Clock Pulses 96, // Divisor Pulses (96 * X) 192, 288, 384, 480, 576, 672, 768, 864, 960, 1056, 1152, 1536, 2304, 3072, 6144, 12288}; static const byte DEFAULT_CLOCK_MOD_INDEX = 8; // x1 or 96 PPQN. class Channel { public: Channel() { Init(); } void Init() { // Reset base values to their defaults base_clock_mod_index = DEFAULT_CLOCK_MOD_INDEX; base_probability = 100; base_duty_cycle = 50; base_offset = 0; base_swing = 50; base_euc_steps = 1; base_euc_hits = 1; cvmod_clock_mod_index = base_clock_mod_index; cvmod_probability = base_probability; cvmod_duty_cycle = base_duty_cycle; cvmod_offset = base_offset; cvmod_swing = base_swing; cv1_dest = CV_DEST_NONE; cv2_dest = CV_DEST_NONE; pattern.Init(DEFAULT_PATTERN); // Calcule the clock mod pulses on init. _recalculatePulses(); } // Setters (Set the BASE value) void setClockMod(int index) { base_clock_mod_index = constrain(index, 0, MOD_CHOICE_SIZE - 1); if (!isCvModActive()) { cvmod_clock_mod_index = base_clock_mod_index; _recalculatePulses(); } } void setProbability(int prob) { base_probability = constrain(prob, 0, 100); if (!isCvModActive()) { cvmod_probability = base_probability; _recalculatePulses(); } } void setDutyCycle(int duty) { base_duty_cycle = constrain(duty, 1, 99); if (!isCvModActive()) { cvmod_duty_cycle = base_duty_cycle; _recalculatePulses(); } } void setOffset(int off) { base_offset = constrain(off, 0, 99); if (!isCvModActive()) { cvmod_offset = base_offset; _recalculatePulses(); } } void setSwing(int val) { base_swing = constrain(val, 50, 95); if (!isCvModActive()) { cvmod_swing = base_swing; _recalculatePulses(); } } // Euclidean void setSteps(int val) { base_euc_steps = constrain(val, 1, MAX_PATTERN_LEN); if (cv1_dest != CV_DEST_EUC_STEPS && cv2_dest != CV_DEST_EUC_STEPS) { pattern.SetSteps(val); } } void setHits(int val) { base_euc_hits = constrain(val, 1, base_euc_steps); if (cv1_dest != CV_DEST_EUC_HITS && cv2_dest != CV_DEST_EUC_HITS) { pattern.SetHits(val); } } void setCv1Dest(CvDestination dest) { cv1_dest = dest; } void setCv2Dest(CvDestination dest) { cv2_dest = dest; } CvDestination getCv1Dest() const { return cv1_dest; } CvDestination getCv2Dest() const { return cv2_dest; } // Getters (Get the BASE value for editing or cv modded value for display) int getProbability(bool withCvMod = false) const { return withCvMod ? cvmod_probability : base_probability; } int getDutyCycle(bool withCvMod = false) const { return withCvMod ? cvmod_duty_cycle : base_duty_cycle; } int getOffset(bool withCvMod = false) const { return withCvMod ? cvmod_offset : base_offset; } int getSwing(bool withCvMod = false) const { return withCvMod ? cvmod_swing : base_swing; } int getClockMod(bool withCvMod = false) const { return pgm_read_word_near(&CLOCK_MOD[getClockModIndex(withCvMod)]); } int getClockModIndex(bool withCvMod = false) const { return withCvMod ? cvmod_clock_mod_index : base_clock_mod_index; } bool isCvModActive() const { return cv1_dest != CV_DEST_NONE || cv2_dest != CV_DEST_NONE; } byte getSteps(bool withCvMod = false) const { return withCvMod ? pattern.GetSteps() : base_euc_steps; } byte getHits(bool withCvMod = false) const { return withCvMod ? pattern.GetHits() : base_euc_hits; } /** * @brief Processes a clock tick and determines if the output should be high or low. * Note: this method is called from an ISR and must be kept as simple as possible. * @param tick The current clock tick count. * @param output The output object to be modified. */ void processClockTick(uint32_t tick, DigitalOutput& output) { const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[cvmod_clock_mod_index]); // Conditionally apply swing on down beats. uint16_t swing_pulses = 0; if (_swing_pulse_amount > 0 && (tick / mod_pulses) % 2 == 1) { swing_pulses = _swing_pulse_amount; } // Duty cycle high check logic const uint32_t current_tick_offset = tick + _offset_pulses + swing_pulses; if (!output.On()) { // Step check if (current_tick_offset % mod_pulses == 0) { bool hit = cvmod_probability >= random(0, 100); // Euclidean rhythm hit check switch (pattern.NextStep()) { case Pattern::REST: // Rest when active or fall back to probability hit = false; break; case Pattern::HIT: // Hit if probability is true hit &= true; break; } if (hit) { output.High(); } } } // Duty cycle low check const uint32_t duty_cycle_end_tick = tick + _duty_pulses + _offset_pulses + swing_pulses; if (duty_cycle_end_tick % mod_pulses == 0) { output.Low(); } } /** * @brief Calculate and store cv modded values using bipolar mapping. * Default to base value if not the current CV destination. * * @param cv1_val analog input reading for cv1 * @param cv2_val analog input reading for cv2 * */ void applyCvMod(int cv1_val, int cv2_val) { // Note: This is optimized for cpu performance. This method is called // from the main loop and stores the cv mod values. This reduces CPU // cycles inside the internal clock interrupt, which is preferrable. // However, if RAM usage grows too much, we have an opportunity to // refactor this to store just the CV read values, and calculate the // cv mod value per channel inside the getter methods by passing cv // values. This would reduce RAM usage, but would introduce a // significant CPU cost, which may have undesirable performance issues. if (!isCvModActive()) { cvmod_clock_mod_index = base_clock_mod_index; cvmod_probability = base_clock_mod_index; cvmod_duty_cycle = base_clock_mod_index; cvmod_offset = base_clock_mod_index; cvmod_swing = base_clock_mod_index; return; } int dest_mod = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -(MOD_CHOICE_SIZE / 2), MOD_CHOICE_SIZE / 2); cvmod_clock_mod_index = constrain(base_clock_mod_index + dest_mod, 0, 100); int prob_mod = _calculateMod(CV_DEST_PROB, cv1_val, cv2_val, -50, 50); cvmod_probability = constrain(base_probability + prob_mod, 0, 100); int duty_mod = _calculateMod(CV_DEST_DUTY, cv1_val, cv2_val, -50, 50); cvmod_duty_cycle = constrain(base_duty_cycle + duty_mod, 1, 99); int offset_mod = _calculateMod(CV_DEST_OFFSET, cv1_val, cv2_val, -50, 50); cvmod_offset = constrain(base_offset + offset_mod, 0, 99); int swing_mod = _calculateMod(CV_DEST_SWING, cv1_val, cv2_val, -25, 25); cvmod_swing = constrain(base_swing + swing_mod, 50, 95); int step_mod = _calculateMod(CV_DEST_EUC_STEPS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN); pattern.SetSteps(base_euc_steps + step_mod); int hit_mod = _calculateMod(CV_DEST_EUC_HITS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN); pattern.SetHits(base_euc_hits + hit_mod); // After all cvmod values are updated, recalculate clock pulse modifiers. _recalculatePulses(); } private: int _calculateMod(CvDestination dest, int cv1_val, int cv2_val, int min_range, int max_range) { int mod1 = (cv1_dest == dest) ? map(cv1_val, -512, 512, min_range, max_range) : 0; int mod2 = (cv2_dest == dest) ? map(cv2_val, -512, 512, min_range, max_range) : 0; return mod1 + mod2; } void _recalculatePulses() { const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[cvmod_clock_mod_index]); _duty_pulses = max((long)((mod_pulses * (100L - cvmod_duty_cycle)) / 100L), 1L); _offset_pulses = (long)((mod_pulses * (100L - cvmod_offset)) / 100L); // Calculate the down beat swing amount. if (cvmod_swing > 50) { int shifted_swing = cvmod_swing - 50; _swing_pulse_amount = (long)((mod_pulses * (100L - shifted_swing)) / 100L); } else { _swing_pulse_amount = 0; } } // User-settable base values. byte base_clock_mod_index; byte base_probability; byte base_duty_cycle; byte base_offset; byte base_swing; byte base_euc_steps; byte base_euc_hits; // Base value with cv mod applied. byte cvmod_clock_mod_index; byte cvmod_probability; byte cvmod_duty_cycle; byte cvmod_offset; byte cvmod_swing; // CV mod configuration CvDestination cv1_dest; CvDestination cv2_dest; // Euclidean pattern Pattern pattern; // Pre-calculated pulse values for ISR performance uint16_t _duty_pulses; uint16_t _offset_pulses; uint16_t _swing_pulse_amount; }; #endif // CHANNEL_H