Vendorize uClock (#10)

Add copy of uClock to the repo including memory optimization changes.

Also add user config setting for changing Pulse Out resolution.

Reviewed-on: https://git.pinkduck.xyz/adam/libGravity/pulls/10
Co-authored-by: Adam Wonak <adam.wonak@gmail.com>
Co-committed-by: Adam Wonak <adam.wonak@gmail.com>
This commit is contained in:
2025-07-02 02:45:39 +00:00
committed by adam
parent edddfd5879
commit dd1228be00
14 changed files with 966 additions and 37 deletions

View File

@ -14,10 +14,9 @@ Common directory locations:
## Required Third-party Libraries ## Required Third-party Libraries
* [uClock](https://github.com/midilab/uClock) [MIT] - Handle clock tempo, external clock input, and internal clock timer handler. * [uClock](https://github.com/midilab/uClock) [MIT] - (Included with this repo) Handle clock tempo, external clock input, and internal clock timer handler.
* [RotateEncoder](https://github.com/mathertel/RotaryEncoder) [BSD] - Library for reading and interpreting encoder rotation. * [RotateEncoder](https://github.com/mathertel/RotaryEncoder) [BSD] - Library for reading and interpreting encoder rotation.
* [Adafruit_GFX](https://github.com/adafruit/Adafruit-GFX-Library) [BSD] - Graphics helper library. * [U8g2](https://github.com/olikraus/u8g2/) [MIT] - Graphics helper library.
* [Adafruit_SSD1306](https://github.com/adafruit/Adafruit_SSD1306) [BSD] - Library for interacting with the SSD1306 OLED display.
## Example ## Example

17
clock.h
View File

@ -13,9 +13,9 @@
#define CLOCK_H #define CLOCK_H
#include <NeoHWSerial.h> #include <NeoHWSerial.h>
#include <uClock.h>
#include "peripherials.h" #include "peripherials.h"
#include "uClock.h"
// MIDI clock, start, stop, and continue byte definitions - based on MIDI 1.0 Standards. // MIDI clock, start, stop, and continue byte definitions - based on MIDI 1.0 Standards.
#define MIDI_CLOCK 0xF8 #define MIDI_CLOCK 0xF8
@ -39,6 +39,14 @@ class Clock {
SOURCE_LAST, SOURCE_LAST,
}; };
enum Pulse {
PULSE_NONE,
PULSE_PPQN_1,
PULSE_PPQN_4,
PULSE_PPQN_24,
PULSE_LAST,
};
void Init() { void Init() {
NeoSerial.begin(31250); NeoSerial.begin(31250);
@ -55,7 +63,6 @@ class Clock {
uClock.setOnClockStart(sendMIDIStart); uClock.setOnClockStart(sendMIDIStart);
uClock.setOnClockStop(sendMIDIStop); uClock.setOnClockStop(sendMIDIStop);
uClock.setOnSync24(sendMIDIClock); uClock.setOnSync24(sendMIDIClock);
uClock.setOnSync48(sendPulseOut);
uClock.start(); uClock.start();
} }
@ -75,7 +82,7 @@ class Clock {
void SetSource(Source source) { void SetSource(Source source) {
bool was_playing = !IsPaused(); bool was_playing = !IsPaused();
uClock.stop(); uClock.stop();
// If source is currently MIDI, disable the serial interrupt handler. // If we are changing the source from MIDI, disable the serial interrupt handler.
if (source_ == SOURCE_EXTERNAL_MIDI) { if (source_ == SOURCE_EXTERNAL_MIDI) {
NeoSerial.attachInterrupt(serialEventNoop); NeoSerial.attachInterrupt(serialEventNoop);
} }
@ -175,10 +182,6 @@ class Clock {
static void sendMIDIClock(uint32_t tick) { static void sendMIDIClock(uint32_t tick) {
NeoSerial.write(MIDI_CLOCK); NeoSerial.write(MIDI_CLOCK);
} }
static void sendPulseOut(uint32_t tick) {
digitalWrite(PULSE_OUT_PIN, !digitalRead(PULSE_OUT_PIN));
}
}; };
#endif #endif

View File

@ -101,6 +101,32 @@ void HandleIntClockTick(uint32_t tick) {
} }
} }
// Pulse Out gate
if (app.selected_pulse != Clock::PULSE_NONE) {
int clock_index;
switch (app.selected_pulse) {
case Clock::PULSE_PPQN_24:
clock_index = 0;
break;
case Clock::PULSE_PPQN_4:
clock_index = 4;
break;
case Clock::PULSE_PPQN_1:
clock_index = 7;
break;
}
const uint16_t pulse_high_ticks = clock_mod_pulses[clock_index];
const uint32_t pulse_low_ticks = tick + max((long)(pulse_high_ticks / 2), 1L);
if (tick % pulse_high_ticks == 0) {
gravity.pulse.High();
}
if (pulse_low_ticks % pulse_high_ticks == 0) {
gravity.pulse.Low();
}
}
if (!app.editing_param) { if (!app.editing_param) {
app.refresh_screen |= refresh; app.refresh_screen |= refresh;
} }
@ -197,6 +223,13 @@ void editMainParameter(int val) {
gravity.clock.SetSource(app.selected_source); gravity.clock.SetSource(app.selected_source);
break; break;
} }
case PARAM_MAIN_PULSE:
byte pulse = static_cast<int>(app.selected_pulse);
updateSelection(pulse, val, Clock::PULSE_LAST);
app.selected_pulse = static_cast<Clock::Pulse>(pulse);
if (app.selected_pulse == Clock::PULSE_NONE) {
gravity.pulse.Low();
}
case PARAM_MAIN_ENCODER_DIR: case PARAM_MAIN_ENCODER_DIR:
updateSelection(app.selected_sub_param, val, 2); updateSelection(app.selected_sub_param, val, 2);
break; break;

View File

@ -16,6 +16,7 @@ struct AppState {
byte selected_channel = 0; // 0=tempo, 1-6=output channel byte selected_channel = 0; // 0=tempo, 1-6=output channel
byte selected_shuffle = 0; byte selected_shuffle = 0;
Clock::Source selected_source = Clock::SOURCE_INTERNAL; Clock::Source selected_source = Clock::SOURCE_INTERNAL;
Clock::Pulse selected_pulse = Clock::PULSE_PPQN_24;
Channel channel[Gravity::OUTPUT_COUNT]; Channel channel[Gravity::OUTPUT_COUNT];
}; };
@ -28,6 +29,7 @@ static Channel& GetSelectedChannel() {
enum ParamsMainPage { enum ParamsMainPage {
PARAM_MAIN_TEMPO, PARAM_MAIN_TEMPO,
PARAM_MAIN_SOURCE, PARAM_MAIN_SOURCE,
PARAM_MAIN_PULSE,
PARAM_MAIN_ENCODER_DIR, PARAM_MAIN_ENCODER_DIR,
PARAM_MAIN_RESET_STATE, PARAM_MAIN_RESET_STATE,
PARAM_MAIN_LAST, PARAM_MAIN_LAST,

View File

@ -3,6 +3,7 @@
#include <Arduino.h> #include <Arduino.h>
#include <gravity.h> #include <gravity.h>
#include "euclidean.h" #include "euclidean.h"
// Enums for CV configuration // Enums for CV configuration
@ -66,7 +67,7 @@ class Channel {
} }
} }
void setProbability(int prob) { void setProbability(int prob) {
base_probability = constrain(prob, 0, 100); base_probability = constrain(prob, 0, 100);
if (!isCvModActive()) { if (!isCvModActive()) {
cvmod_probability = base_probability; cvmod_probability = base_probability;
@ -74,20 +75,20 @@ class Channel {
} }
void setDutyCycle(int duty) { void setDutyCycle(int duty) {
base_duty_cycle = constrain(duty, 1, 99); base_duty_cycle = constrain(duty, 1, 99);
if (!isCvModActive()) { if (!isCvModActive()) {
cvmod_duty_cycle = base_duty_cycle; cvmod_duty_cycle = base_duty_cycle;
} }
} }
void setOffset(int off) { void setOffset(int off) {
base_offset = constrain(off, 0, 99); base_offset = constrain(off, 0, 99);
if (!isCvModActive()) { if (!isCvModActive()) {
cvmod_offset = base_offset; cvmod_offset = base_offset;
} }
} }
void setSwing(int val) { void setSwing(int val) {
base_swing = constrain(val, 50, 95); base_swing = constrain(val, 50, 95);
if (!isCvModActive()) { if (!isCvModActive()) {
cvmod_swing = base_swing; cvmod_swing = base_swing;
} }
@ -141,12 +142,12 @@ class Channel {
bool hit = cvmod_probability >= random(0, 100); bool hit = cvmod_probability >= random(0, 100);
// Euclidean rhythm check // Euclidean rhythm check
switch (pattern.NextStep()) { switch (pattern.NextStep()) {
case Pattern::REST: // Rest when active or fall back to probability case Pattern::REST: // Rest when active or fall back to probability
hit = false; hit = false;
break; break;
case Pattern::HIT: // Hit if probability is true case Pattern::HIT: // Hit if probability is true
hit &= true; hit &= true;
break; break;
} }
if (hit) { if (hit) {
output.High(); output.High();
@ -192,11 +193,11 @@ class Channel {
(cv_destination == CV_DEST_SWING) (cv_destination == CV_DEST_SWING)
? constrain(base_swing + map(value, -512, 512, -25, 25), 50, 95) ? constrain(base_swing + map(value, -512, 512, -25, 25), 50, 95)
: base_swing; : base_swing;
if (cv_destination == CV_DEST_EUC_STEPS) { if (cv_destination == CV_DEST_EUC_STEPS) {
pattern.SetSteps(map(value, -512, 512, 0, MAX_PATTERN_LEN)); pattern.SetSteps(map(value, -512, 512, 0, MAX_PATTERN_LEN));
} }
if (cv_destination == CV_DEST_EUC_HITS) { if (cv_destination == CV_DEST_EUC_HITS) {
pattern.SetHits(map(value, -512, 512, 0, pattern.GetSteps())); pattern.SetHits(map(value, -512, 512, 0, pattern.GetSteps()));
} }

View File

@ -68,16 +68,16 @@ static const unsigned char pause_icon[28] PROGMEM = {
0x38, 0x0E, 0x00, 0x00}; 0x38, 0x0E, 0x00, 0x00};
// Constants for screen layout and fonts // Constants for screen layout and fonts
constexpr int SCREEN_CENTER_X = 32; constexpr uint8_t SCREEN_CENTER_X = 32;
constexpr int MAIN_TEXT_Y = 26; constexpr uint8_t MAIN_TEXT_Y = 26;
constexpr int SUB_TEXT_Y = 40; constexpr uint8_t SUB_TEXT_Y = 40;
constexpr int VISIBLE_MENU_ITEMS = 3; constexpr uint8_t VISIBLE_MENU_ITEMS = 3;
constexpr int MENU_ITEM_HEIGHT = 14; constexpr uint8_t MENU_ITEM_HEIGHT = 14;
constexpr int MENU_BOX_PADDING = 4; constexpr uint8_t MENU_BOX_PADDING = 4;
constexpr int MENU_BOX_WIDTH = 64; constexpr uint8_t MENU_BOX_WIDTH = 64;
constexpr int CHANNEL_BOXES_Y = 50; constexpr uint8_t CHANNEL_BOXES_Y = 50;
constexpr int CHANNEL_BOX_WIDTH = 18; constexpr uint8_t CHANNEL_BOX_WIDTH = 18;
constexpr int CHANNEL_BOX_HEIGHT = 14; constexpr uint8_t CHANNEL_BOX_HEIGHT = 14;
// Helper function to draw centered text // Helper function to draw centered text
void drawCenteredText(const char* text, int y, const uint8_t* font) { void drawCenteredText(const char* text, int y, const uint8_t* font) {
@ -204,6 +204,23 @@ void DisplayMainPage() {
break; break;
} }
break; break;
case PARAM_MAIN_PULSE:
mainText = F("OUT");
switch (app.selected_pulse) {
case Clock::PULSE_NONE:
subText = F("PULSE OFF");
break;
case Clock::PULSE_PPQN_24:
subText = F("24 PPQN PULSE");
break;
case Clock::PULSE_PPQN_4:
subText = F("4 PPQN PULSE");
break;
case Clock::PULSE_PPQN_1:
subText = F("1 PPQN PULSE");
break;
}
break;
case PARAM_MAIN_ENCODER_DIR: case PARAM_MAIN_ENCODER_DIR:
mainText = F("DIR"); mainText = F("DIR");
subText = app.selected_sub_param == 0 ? F("DEFAULT") : F("REVERSED"); subText = app.selected_sub_param == 0 ? F("DEFAULT") : F("REVERSED");
@ -218,7 +235,7 @@ void DisplayMainPage() {
drawCenteredText(subText.c_str(), SUB_TEXT_Y, TEXT_FONT); drawCenteredText(subText.c_str(), SUB_TEXT_Y, TEXT_FONT);
// Draw Main Page menu items // Draw Main Page menu items
String menu_items[PARAM_MAIN_LAST] = {F("TEMPO"), F("SOURCE"), F("ENCODER DIR"), F("RESET")}; String menu_items[PARAM_MAIN_LAST] = {F("TEMPO"), F("SOURCE"), F("PULSE OUT"), F("ENCODER DIR"), F("RESET")};
drawMenuItems(menu_items, PARAM_MAIN_LAST); drawMenuItems(menu_items, PARAM_MAIN_LAST);
} }
@ -329,7 +346,7 @@ void DisplayChannelPage() {
// Draw Channel Page menu items // Draw Channel Page menu items
String menu_items[PARAM_CH_LAST] = { String menu_items[PARAM_CH_LAST] = {
F("MOD"), F("PROBABILITY"), F("DUTY"), F("OFFSET"), F("SWING"), F("EUCLID STEPS"), F("MOD"), F("PROBABILITY"), F("DUTY"), F("OFFSET"), F("SWING"), F("EUCLID STEPS"),
F("EUCLID HITS"), F("CV SOURCE"), F("CV DEST")}; F("EUCLID HITS"), F("CV SOURCE"), F("CV DEST")};
drawMenuItems(menu_items, PARAM_CH_LAST); drawMenuItems(menu_items, PARAM_CH_LAST);
} }

View File

@ -17,6 +17,7 @@ bool StateManager::initialize(AppState& app) {
app.selected_param = load_data.selected_param; app.selected_param = load_data.selected_param;
app.selected_channel = load_data.selected_channel; app.selected_channel = load_data.selected_channel;
app.selected_source = static_cast<Clock::Source>(load_data.selected_source); app.selected_source = static_cast<Clock::Source>(load_data.selected_source);
app.selected_pulse = static_cast<Clock::Pulse>(load_data.selected_pulse);
// Loop through and restore each channel's state. // Loop through and restore each channel's state.
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) { for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
@ -54,6 +55,7 @@ void StateManager::reset(AppState& app) {
app.selected_param = 0; app.selected_param = 0;
app.selected_channel = 0; app.selected_channel = 0;
app.selected_source = Clock::SOURCE_INTERNAL; app.selected_source = Clock::SOURCE_INTERNAL;
app.selected_pulse = Clock::PULSE_PPQN_24;
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) { for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
app.channel[i].Init(); app.channel[i].Init();
@ -61,7 +63,7 @@ void StateManager::reset(AppState& app) {
noInterrupts(); noInterrupts();
_saveMetadata(); // Write the new metadata _saveMetadata(); // Write the new metadata
_saveState(app); // Write the new (default) app state _saveState(app); // Write the new (default) app state
interrupts(); interrupts();
_isDirty = false; _isDirty = false;
@ -97,6 +99,7 @@ void StateManager::_saveState(const AppState& app) {
save_data.selected_param = app.selected_param; save_data.selected_param = app.selected_param;
save_data.selected_channel = app.selected_channel; save_data.selected_channel = app.selected_channel;
save_data.selected_source = static_cast<byte>(app.selected_source); save_data.selected_source = static_cast<byte>(app.selected_source);
save_data.selected_pulse = static_cast<byte>(app.selected_pulse);
// Loop through and populate each channel's state // Loop through and populate each channel's state
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) { for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {

View File

@ -54,6 +54,7 @@ class StateManager {
byte selected_param; byte selected_param;
byte selected_channel; byte selected_channel;
byte selected_source; byte selected_source;
byte selected_pulse;
ChannelState channel_data[Gravity::OUTPUT_COUNT]; ChannelState channel_data[Gravity::OUTPUT_COUNT];
}; };

View File

@ -12,7 +12,7 @@
#include "gravity.h" #include "gravity.h"
// Initialize the static pointer for the EncoderDir class to null. We want to // Initialize the static pointer for the EncoderDir class to null. We want to
// have a static pointer to decouple the ISR from the global gravity object. // have a static pointer to decouple the ISR from the global gravity object.
Encoder* Encoder::_instance = nullptr; Encoder* Encoder::_instance = nullptr;
void Gravity::Init() { void Gravity::Init() {
@ -52,6 +52,8 @@ void Gravity::initOutputs() {
outputs[3].Init(OUT_CH4); outputs[3].Init(OUT_CH4);
outputs[4].Init(OUT_CH5); outputs[4].Init(OUT_CH5);
outputs[5].Init(OUT_CH6); outputs[5].Init(OUT_CH6);
// Expansion Pulse Output
pulse.Init(PULSE_OUT_PIN);
} }
void Gravity::initDisplay() { void Gravity::initDisplay() {
// OLED Display configuration. // OLED Display configuration.

View File

@ -32,7 +32,8 @@ class Gravity {
U8G2_SSD1306_128X64_NONAME_1_HW_I2C display; // OLED display object. U8G2_SSD1306_128X64_NONAME_1_HW_I2C display; // OLED display object.
Clock clock; // Clock source wrapper. Clock clock; // Clock source wrapper.
DigitalOutput outputs[OUTPUT_COUNT]; // An array containing each Output object. DigitalOutput outputs[OUTPUT_COUNT]; // An array containing each Output object.
Encoder encoder; // Rotary encoder with button instance DigitalOutput pulse; // MIDI Expander module pulse output.
Encoder encoder; // Rotary encoder with button instance
Button shift_button; Button shift_button;
Button play_button; Button play_button;
AnalogInput cv1; AnalogInput cv1;

409
uClock.cpp Executable file
View File

@ -0,0 +1,409 @@
/*!
* @file uClock.cpp
* Project BPM clock generator for Arduino
* @brief A Library to implement BPM clock tick calls using hardware interruption. Supported and tested on AVR boards(ATmega168/328, ATmega16u4/32u4 and ATmega2560) and ARM boards(RPI2040, Teensy, Seedstudio XIAO M0 and ESP32)
* @version 2.2.1
* @author Romulo Silva
* @date 10/06/2017
* @license MIT - (c) 2024 - Romulo Silva - contact@midilab.co
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "uClock.h"
#include "uClock/platforms/avr.h"
//
// Platform specific timer setup/control
//
// initTimer(uint32_t us_interval) and setTimer(uint32_t us_interval)
// are called from architecture specific module included at the
// header of this file
void uclockInitTimer()
{
// begin at 120bpm
initTimer(uClock.bpmToMicroSeconds(120.00));
}
void setTimerTempo(float bpm)
{
setTimer(uClock.bpmToMicroSeconds(bpm));
}
namespace umodular { namespace clock {
static inline uint32_t phase_mult(uint32_t val)
{
return (val * PHASE_FACTOR) >> 8;
}
static inline uint32_t clock_diff(uint32_t old_clock, uint32_t new_clock)
{
if (new_clock >= old_clock) {
return new_clock - old_clock;
} else {
return new_clock + (4294967295 - old_clock);
}
}
uClockClass::uClockClass()
{
tempo = 120;
start_timer = 0;
last_interval = 0;
sync_interval = 0;
clock_state = PAUSED;
clock_mode = INTERNAL_CLOCK;
resetCounters();
onOutputPPQNCallback = nullptr;
onSync24Callback = nullptr;
onClockStartCallback = nullptr;
onClockStopCallback = nullptr;
// initialize reference data
calculateReferencedata();
}
void uClockClass::init()
{
if (ext_interval_buffer == nullptr)
setExtIntervalBuffer(1);
uclockInitTimer();
// first interval calculus
setTempo(tempo);
}
uint32_t uClockClass::bpmToMicroSeconds(float bpm)
{
return (60000000.0f / (float)output_ppqn / bpm);
}
void uClockClass::calculateReferencedata()
{
mod_clock_ref = output_ppqn / input_ppqn;
mod_sync24_ref = output_ppqn / PPQN_24;
}
void uClockClass::setOutputPPQN(PPQNResolution resolution)
{
// dont allow PPQN lower than PPQN_4 for output clock (to avoid problems with mod_step_ref)
if (resolution < PPQN_4)
return;
ATOMIC(
output_ppqn = resolution;
calculateReferencedata();
)
}
void uClockClass::setInputPPQN(PPQNResolution resolution)
{
ATOMIC(
input_ppqn = resolution;
calculateReferencedata();
)
}
void uClockClass::start()
{
resetCounters();
start_timer = millis();
if (onClockStartCallback) {
onClockStartCallback();
}
if (clock_mode == INTERNAL_CLOCK) {
clock_state = STARTED;
} else {
clock_state = STARTING;
}
}
void uClockClass::stop()
{
clock_state = PAUSED;
start_timer = 0;
resetCounters();
if (onClockStopCallback) {
onClockStopCallback();
}
}
void uClockClass::pause()
{
if (clock_mode == INTERNAL_CLOCK) {
if (clock_state == PAUSED) {
start();
} else {
stop();
}
}
}
void uClockClass::setTempo(float bpm)
{
if (clock_mode == EXTERNAL_CLOCK) {
return;
}
if (bpm < MIN_BPM || bpm > MAX_BPM) {
return;
}
ATOMIC(
tempo = bpm
)
setTimerTempo(bpm);
}
float uClockClass::getTempo()
{
if (clock_mode == EXTERNAL_CLOCK) {
uint32_t acc = 0;
// wait the buffer to get full
if (ext_interval_buffer[ext_interval_buffer_size-1] == 0) {
return tempo;
}
for (uint8_t i=0; i < ext_interval_buffer_size; i++) {
acc += ext_interval_buffer[i];
}
if (acc != 0) {
return constrainBpm(freqToBpm(acc / ext_interval_buffer_size));
}
}
return tempo;
}
// for software timer implementation(fallback for no board support)
void uClockClass::run() {}
float inline uClockClass::freqToBpm(uint32_t freq)
{
return 60000000.0f / (float)(freq * input_ppqn);
}
float inline uClockClass::constrainBpm(float bpm)
{
return (bpm < MIN_BPM) ? MIN_BPM : ( bpm > MAX_BPM ? MAX_BPM : bpm );
}
void uClockClass::setClockMode(ClockMode tempo_mode)
{
clock_mode = tempo_mode;
}
uClockClass::ClockMode uClockClass::getClockMode()
{
return clock_mode;
}
void uClockClass::clockMe()
{
if (clock_mode == EXTERNAL_CLOCK) {
ATOMIC(
handleExternalClock()
)
}
}
void uClockClass::setExtIntervalBuffer(uint8_t buffer_size)
{
if (ext_interval_buffer != nullptr)
return;
// alloc once and forever policy
ext_interval_buffer_size = buffer_size;
ext_interval_buffer = (uint32_t*) malloc( sizeof(uint32_t) * ext_interval_buffer_size );
}
void uClockClass::resetCounters()
{
tick = 0;
int_clock_tick = 0;
mod_clock_counter = 0;
mod_sync24_counter = 0;
sync24_tick = 0;
ext_clock_tick = 0;
ext_clock_us = 0;
ext_interval_idx = 0;
for (uint8_t i=0; i < ext_interval_buffer_size; i++) {
ext_interval_buffer[i] = 0;
}
}
void uClockClass::handleExternalClock()
{
switch (clock_state) {
case PAUSED:
break;
case STARTING:
clock_state = STARTED;
ext_clock_us = micros();
break;
case STARTED:
uint32_t now_clock_us = micros();
last_interval = clock_diff(ext_clock_us, now_clock_us);
ext_clock_us = now_clock_us;
// external clock tick me!
ext_clock_tick++;
// accumulate interval incomming ticks data for getTempo() smooth reads on slave clock_mode
if(++ext_interval_idx >= ext_interval_buffer_size) {
ext_interval_idx = 0;
}
ext_interval_buffer[ext_interval_idx] = last_interval;
if (ext_clock_tick == 1) {
ext_interval = last_interval;
} else {
ext_interval = (((uint32_t)ext_interval * (uint32_t)PLL_X) + (uint32_t)(256 - PLL_X) * (uint32_t)last_interval) >> 8;
}
break;
}
}
void uClockClass::handleTimerInt()
{
// track main input clock counter
if (mod_clock_counter == mod_clock_ref)
mod_clock_counter = 0;
// process sync signals first please...
if (mod_clock_counter == 0) {
if (clock_mode == EXTERNAL_CLOCK) {
// sync tick position with external tick clock
if ((int_clock_tick < ext_clock_tick) || (int_clock_tick > (ext_clock_tick + 1))) {
int_clock_tick = ext_clock_tick;
tick = int_clock_tick * mod_clock_ref;
mod_clock_counter = tick % mod_clock_ref;
}
uint32_t counter = ext_interval;
uint32_t now_clock_us = micros();
sync_interval = clock_diff(ext_clock_us, now_clock_us);
if (int_clock_tick <= ext_clock_tick) {
counter -= phase_mult(sync_interval);
} else {
if (counter > sync_interval) {
counter += phase_mult(counter - sync_interval);
}
}
// update internal clock timer frequency
float bpm = constrainBpm(freqToBpm(counter));
if (bpm != tempo) {
tempo = bpm;
setTimerTempo(bpm);
}
}
// internal clock tick me!
++int_clock_tick;
}
++mod_clock_counter;
// Sync24 callback
if (onSync24Callback) {
if (mod_sync24_counter == mod_sync24_ref)
mod_sync24_counter = 0;
if (mod_sync24_counter == 0) {
onSync24Callback(sync24_tick);
++sync24_tick;
}
++mod_sync24_counter;
}
// main PPQNCallback
if (onOutputPPQNCallback) {
onOutputPPQNCallback(tick);
++tick;
}
}
// elapsed time support
uint8_t uClockClass::getNumberOfSeconds(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return ((_millis - time) / 1000) % SECS_PER_MIN;
}
uint8_t uClockClass::getNumberOfMinutes(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return (((_millis - time) / 1000) / SECS_PER_MIN) % SECS_PER_MIN;
}
uint8_t uClockClass::getNumberOfHours(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return (((_millis - time) / 1000) % SECS_PER_DAY) / SECS_PER_HOUR;
}
uint8_t uClockClass::getNumberOfDays(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return ((_millis - time) / 1000) / SECS_PER_DAY;
}
uint32_t uClockClass::getNowTimer()
{
return _millis;
}
uint32_t uClockClass::getPlayTime()
{
return start_timer;
}
} } // end namespace umodular::clock
umodular::clock::uClockClass uClock;
volatile uint32_t _millis = 0;
//
// TIMER HANDLER
//
void uClockHandler()
{
// global timer counter
_millis = millis();
if (uClock.clock_state == uClock.STARTED) {
uClock.handleTimerInt();
}
}

180
uClock.h Executable file
View File

@ -0,0 +1,180 @@
/*!
* @file uClock.h
* Project BPM clock generator for Arduino
* @brief A Library to implement BPM clock tick calls using hardware interruption. Supported and tested on AVR boards(ATmega168/328, ATmega16u4/32u4 and ATmega2560) and ARM boards(RPI2040, Teensy, Seedstudio XIAO M0 and ESP32)
* @version 2.2.1
* @author Romulo Silva
* @date 10/06/2017
* @license MIT - (c) 2024 - Romulo Silva - contact@midilab.co
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __U_CLOCK_H__
#define __U_CLOCK_H__
#include <Arduino.h>
#include <inttypes.h>
namespace umodular { namespace clock {
#define MIN_BPM 1
#define MAX_BPM 400
#define PHASE_FACTOR 16
#define PLL_X 220
#define SECS_PER_MIN (60UL)
#define SECS_PER_HOUR (3600UL)
#define SECS_PER_DAY (SECS_PER_HOUR * 24L)
class uClockClass {
public:
enum ClockMode {
INTERNAL_CLOCK = 0,
EXTERNAL_CLOCK
};
enum ClockState {
PAUSED = 0,
STARTING,
STARTED
};
enum PPQNResolution {
PPQN_1 = 1,
PPQN_2 = 2,
PPQN_4 = 4,
PPQN_8 = 8,
PPQN_12 = 12,
PPQN_24 = 24,
PPQN_48 = 48,
PPQN_96 = 96,
PPQN_384 = 384,
PPQN_480 = 480,
PPQN_960 = 960
};
ClockState clock_state;
uClockClass();
void setOnOutputPPQN(void (*callback)(uint32_t tick)) {
onOutputPPQNCallback = callback;
}
void setOnSync24(void (*callback)(uint32_t tick)) {
onSync24Callback = callback;
}
void setOnClockStart(void (*callback)()) {
onClockStartCallback = callback;
}
void setOnClockStop(void (*callback)()) {
onClockStopCallback = callback;
}
void init();
void setOutputPPQN(PPQNResolution resolution);
void setInputPPQN(PPQNResolution resolution);
void handleTimerInt();
void handleExternalClock();
void resetCounters();
// external class control
void start();
void stop();
void pause();
void setTempo(float bpm);
float getTempo();
// for software timer implementation(fallback for no board support)
void run();
// external timming control
void setClockMode(ClockMode tempo_mode);
ClockMode getClockMode();
void clockMe();
// for smooth slave tempo calculate display you should raise the
// buffer_size of ext_interval_buffer in between 64 to 128. 254 max size.
// note: this doesn't impact on sync time, only display time getTempo()
// if you dont want to use it, it is default set it to 1 for memory save
void setExtIntervalBuffer(uint8_t buffer_size);
// elapsed time support
uint8_t getNumberOfSeconds(uint32_t time);
uint8_t getNumberOfMinutes(uint32_t time);
uint8_t getNumberOfHours(uint32_t time);
uint8_t getNumberOfDays(uint32_t time);
uint32_t getNowTimer();
uint32_t getPlayTime();
uint32_t bpmToMicroSeconds(float bpm);
private:
float inline freqToBpm(uint32_t freq);
float inline constrainBpm(float bpm);
void calculateReferencedata();
void (*onOutputPPQNCallback)(uint32_t tick);
void (*onSync24Callback)(uint32_t tick);
void (*onClockStartCallback)();
void (*onClockStopCallback)();
// clock input/output control
PPQNResolution output_ppqn = PPQN_96;
PPQNResolution input_ppqn = PPQN_24;
// output and internal counters, ticks and references
uint32_t tick;
uint32_t int_clock_tick;
uint8_t mod_clock_counter;
uint16_t mod_clock_ref;
uint8_t mod_sync24_counter;
uint16_t mod_sync24_ref;
uint32_t sync24_tick;
// external clock control
volatile uint32_t ext_clock_us;
volatile uint32_t ext_clock_tick;
volatile uint32_t ext_interval;
uint32_t last_interval;
uint32_t sync_interval;
float tempo;
uint32_t start_timer;
ClockMode clock_mode;
volatile uint32_t * ext_interval_buffer = nullptr;
uint8_t ext_interval_buffer_size;
uint16_t ext_interval_idx;
};
} } // end namespace umodular::clock
extern umodular::clock::uClockClass uClock;
extern "C" {
extern volatile uint32_t _millis;
}
#endif /* __U_CLOCK_H__ */

98
uClock/platforms/avr.h Normal file
View File

@ -0,0 +1,98 @@
/*!
* @file avr.h
* Project BPM clock generator for Arduino
* @brief A Library to implement BPM clock tick calls using hardware interruption. Supported and tested on AVR boards(ATmega168/328, ATmega16u4/32u4 and ATmega2560) and ARM boards(RPI2040, Teensy, Seedstudio XIAO M0 and ESP32)
* @version 2.2.1
* @author Romulo Silva
* @date 10/06/2017
* @license MIT - (c) 2024 - Romulo Silva - contact@midilab.co
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#define ATOMIC(X) noInterrupts(); X; interrupts();
// want a different avr clock support?
// TODO: we should do this using macro guards for avrs different clocks freqeuncy setup at compile time
#define AVR_CLOCK_FREQ 16000000
// forward declaration of uClockHandler
void uClockHandler();
// AVR ISR Entrypoint
ISR(TIMER1_COMPA_vect)
{
uClockHandler();
}
void initTimer(uint32_t init_clock)
{
ATOMIC(
// 16bits Timer1 init
// begin at 120bpm (48.0007680122882 Hz)
TCCR1A = 0; // set entire TCCR1A register to 0
TCCR1B = 0; // same for TCCR1B
TCNT1 = 0; // initialize counter value to 0
// set compare match register for 48.0007680122882 Hz increments
OCR1A = 41665; // = 16000000 / (8 * 48.0007680122882) - 1 (must be <65536)
// turn on CTC mode
TCCR1B |= (1 << WGM12);
// Set CS12, CS11 and CS10 bits for 8 prescaler
TCCR1B |= (0 << CS12) | (1 << CS11) | (0 << CS10);
// enable timer compare interrupt
TIMSK1 |= (1 << OCIE1A);
)
}
void setTimer(uint32_t us_interval)
{
float tick_hertz_interval = 1/((float)us_interval/1000000);
uint32_t ocr;
uint8_t tccr = 0;
// 16bits avr timer setup
if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 1 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 1 prescaler
tccr |= (0 << CS12) | (0 << CS11) | (1 << CS10);
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 8 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 8 prescaler
tccr |= (0 << CS12) | (1 << CS11) | (0 << CS10);
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 64 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 64 prescaler
tccr |= (0 << CS12) | (1 << CS11) | (1 << CS10);
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 256 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 256 prescaler
tccr |= (1 << CS12) | (0 << CS11) | (0 << CS10);
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 1024 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 1024 prescaler
tccr |= (1 << CS12) | (0 << CS11) | (1 << CS10);
} else {
// tempo not achiavable
return;
}
ATOMIC(
TCCR1B = 0;
OCR1A = ocr-1;
TCCR1B |= (1 << WGM12);
TCCR1B |= tccr;
)
}

180
uClock/uClock.h Executable file
View File

@ -0,0 +1,180 @@
/*!
* @file uClock.h
* Project BPM clock generator for Arduino
* @brief A Library to implement BPM clock tick calls using hardware interruption. Supported and tested on AVR boards(ATmega168/328, ATmega16u4/32u4 and ATmega2560) and ARM boards(RPI2040, Teensy, Seedstudio XIAO M0 and ESP32)
* @version 2.2.1
* @author Romulo Silva
* @date 10/06/2017
* @license MIT - (c) 2024 - Romulo Silva - contact@midilab.co
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __U_CLOCK_H__
#define __U_CLOCK_H__
#include <Arduino.h>
#include <inttypes.h>
namespace umodular { namespace clock {
#define MIN_BPM 1
#define MAX_BPM 400
#define PHASE_FACTOR 16
#define PLL_X 220
#define SECS_PER_MIN (60UL)
#define SECS_PER_HOUR (3600UL)
#define SECS_PER_DAY (SECS_PER_HOUR * 24L)
class uClockClass {
public:
enum ClockMode {
INTERNAL_CLOCK = 0,
EXTERNAL_CLOCK
};
enum ClockState {
PAUSED = 0,
STARTING,
STARTED
};
enum PPQNResolution {
PPQN_1 = 1,
PPQN_2 = 2,
PPQN_4 = 4,
PPQN_8 = 8,
PPQN_12 = 12,
PPQN_24 = 24,
PPQN_48 = 48,
PPQN_96 = 96,
PPQN_384 = 384,
PPQN_480 = 480,
PPQN_960 = 960
};
ClockState clock_state;
uClockClass();
void setOnOutputPPQN(void (*callback)(uint32_t tick)) {
onOutputPPQNCallback = callback;
}
void setOnSync24(void (*callback)(uint32_t tick)) {
onSync24Callback = callback;
}
void setOnClockStart(void (*callback)()) {
onClockStartCallback = callback;
}
void setOnClockStop(void (*callback)()) {
onClockStopCallback = callback;
}
void init();
void setOutputPPQN(PPQNResolution resolution);
void setInputPPQN(PPQNResolution resolution);
void handleTimerInt();
void handleExternalClock();
void resetCounters();
// external class control
void start();
void stop();
void pause();
void setTempo(float bpm);
float getTempo();
// for software timer implementation(fallback for no board support)
void run();
// external timming control
void setClockMode(ClockMode tempo_mode);
ClockMode getClockMode();
void clockMe();
// for smooth slave tempo calculate display you should raise the
// buffer_size of ext_interval_buffer in between 64 to 128. 254 max size.
// note: this doesn't impact on sync time, only display time getTempo()
// if you dont want to use it, it is default set it to 1 for memory save
void setExtIntervalBuffer(uint8_t buffer_size);
// elapsed time support
uint8_t getNumberOfSeconds(uint32_t time);
uint8_t getNumberOfMinutes(uint32_t time);
uint8_t getNumberOfHours(uint32_t time);
uint8_t getNumberOfDays(uint32_t time);
uint32_t getNowTimer();
uint32_t getPlayTime();
uint32_t bpmToMicroSeconds(float bpm);
private:
float inline freqToBpm(uint32_t freq);
float inline constrainBpm(float bpm);
void calculateReferencedata();
void (*onOutputPPQNCallback)(uint32_t tick);
void (*onSync24Callback)(uint32_t tick);
void (*onClockStartCallback)();
void (*onClockStopCallback)();
// clock input/output control
PPQNResolution output_ppqn = PPQN_96;
PPQNResolution input_ppqn = PPQN_24;
// output and internal counters, ticks and references
uint32_t tick;
uint32_t int_clock_tick;
uint8_t mod_clock_counter;
uint16_t mod_clock_ref;
uint8_t mod_sync24_counter;
uint16_t mod_sync24_ref;
uint32_t sync24_tick;
// external clock control
volatile uint32_t ext_clock_us;
volatile uint32_t ext_clock_tick;
volatile uint32_t ext_interval;
uint32_t last_interval;
uint32_t sync_interval;
float tempo;
uint32_t start_timer;
ClockMode clock_mode;
volatile uint32_t * ext_interval_buffer = nullptr;
uint8_t ext_interval_buffer_size;
uint16_t ext_interval_idx;
};
} } // end namespace umodular::clock
extern umodular::clock::uClockClass uClock;
extern "C" {
extern volatile uint32_t _millis;
}
#endif /* __U_CLOCK_H__ */