Refactor CV Mod (#24)

Move cv mod calculation to processClockTick. This is less ideas because it is an ISR, but it saves a significant amount of memory. Performance doesn't seem to take much of a hit.

Reviewed-on: https://git.pinkduck.xyz/awonak/libGravity/pulls/24
This commit is contained in:
2025-08-09 23:59:24 +00:00
parent fc17afc9a1
commit 872af30fbc
4 changed files with 95 additions and 138 deletions

View File

@ -91,19 +91,6 @@ void loop() {
// Process change in state of inputs and outputs. // Process change in state of inputs and outputs.
gravity.Process(); gravity.Process();
// Read CVs and call the update function for each channel.
int cv1 = gravity.cv1.Read();
int cv2 = gravity.cv2.Read();
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
auto& ch = app.channel[i];
// Only apply CV to the channel when the current channel has cv
// mod configured.
if (ch.isCvModActive()) {
ch.applyCvMod(cv1, cv2);
}
}
// Check for dirty state eligible to be saved. // Check for dirty state eligible to be saved.
stateManager.update(app); stateManager.update(app);

View File

@ -70,14 +70,6 @@ class Channel {
base_duty_cycle = 50; base_duty_cycle = 50;
base_offset = 0; base_offset = 0;
base_swing = 50; base_swing = 50;
base_euc_steps = 1;
base_euc_hits = 1;
cvmod_clock_mod_index = base_clock_mod_index;
cvmod_probability = base_probability;
cvmod_duty_cycle = base_duty_cycle;
cvmod_offset = base_offset;
cvmod_swing = base_swing;
cv1_dest = CV_DEST_NONE; cv1_dest = CV_DEST_NONE;
cv2_dest = CV_DEST_NONE; cv2_dest = CV_DEST_NONE;
@ -88,78 +80,100 @@ class Channel {
_recalculatePulses(); _recalculatePulses();
} }
bool isCvModActive() const { return cv1_dest != CV_DEST_NONE || cv2_dest != CV_DEST_NONE; }
// Setters (Set the BASE value) // Setters (Set the BASE value)
void setClockMod(int index) { void setClockMod(int index) {
base_clock_mod_index = constrain(index, 0, MOD_CHOICE_SIZE - 1); base_clock_mod_index = constrain(index, 0, MOD_CHOICE_SIZE - 1);
if (!isCvModActive()) {
cvmod_clock_mod_index = base_clock_mod_index;
_recalculatePulses();
}
} }
void setProbability(int prob) { void setProbability(int prob) {
base_probability = constrain(prob, 0, 100); base_probability = constrain(prob, 0, 100);
if (!isCvModActive()) {
cvmod_probability = base_probability;
_recalculatePulses();
}
} }
void setDutyCycle(int duty) { void setDutyCycle(int duty) {
base_duty_cycle = constrain(duty, 1, 99); base_duty_cycle = constrain(duty, 1, 99);
if (!isCvModActive()) {
cvmod_duty_cycle = base_duty_cycle;
_recalculatePulses();
}
} }
void setOffset(int off) { void setOffset(int off) {
base_offset = constrain(off, 0, 99); base_offset = constrain(off, 0, 99);
if (!isCvModActive()) {
cvmod_offset = base_offset;
_recalculatePulses();
}
} }
void setSwing(int val) { void setSwing(int val) {
base_swing = constrain(val, 50, 95); base_swing = constrain(val, 50, 95);
if (!isCvModActive()) {
cvmod_swing = base_swing;
_recalculatePulses();
}
} }
// Euclidean // Euclidean
void setSteps(int val) { void setSteps(int val) {
base_euc_steps = constrain(val, 1, MAX_PATTERN_LEN); pattern.SetSteps(val);
if (cv1_dest != CV_DEST_EUC_STEPS && cv2_dest != CV_DEST_EUC_STEPS) {
pattern.SetSteps(val);
}
} }
void setHits(int val) { void setHits(int val) {
base_euc_hits = constrain(val, 1, base_euc_steps); pattern.SetHits(val);
if (cv1_dest != CV_DEST_EUC_HITS && cv2_dest != CV_DEST_EUC_HITS) {
pattern.SetHits(val);
}
} }
void setCv1Dest(CvDestination dest) { cv1_dest = dest; } void setCv1Dest(CvDestination dest) {
void setCv2Dest(CvDestination dest) { cv2_dest = dest; } cv1_dest = dest;
_recalculatePulses();
}
void setCv2Dest(CvDestination dest) {
cv2_dest = dest;
_recalculatePulses();
}
CvDestination getCv1Dest() const { return cv1_dest; } CvDestination getCv1Dest() const { return cv1_dest; }
CvDestination getCv2Dest() const { return cv2_dest; } CvDestination getCv2Dest() const { return cv2_dest; }
// Getters (Get the BASE value for editing or cv modded value for display) // Getters (Get the BASE value for editing or cv modded value for display)
int getProbability() const { return base_probability; }
int getDutyCycle() const { return base_duty_cycle; }
int getOffset() const { return base_offset; }
int getSwing() const { return base_swing; }
int getClockMod() const { return pgm_read_word_near(&CLOCK_MOD[getClockModIndex()]); }
int getClockModIndex() const { return base_clock_mod_index; }
byte getSteps() const { return pattern.GetSteps(); }
byte getHits() const { return pattern.GetHits(); }
int getProbability(bool withCvMod = false) const { return withCvMod ? cvmod_probability : base_probability; } // Getters that calculate the value with CV modulation applied.
int getDutyCycle(bool withCvMod = false) const { return withCvMod ? cvmod_duty_cycle : base_duty_cycle; } int getClockModIndexWithMod(int cv1_val, int cv2_val) {
int getOffset(bool withCvMod = false) const { return withCvMod ? cvmod_offset : base_offset; } int clock_mod_index = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -(MOD_CHOICE_SIZE / 2), MOD_CHOICE_SIZE / 2);
int getSwing(bool withCvMod = false) const { return withCvMod ? cvmod_swing : base_swing; } return constrain(base_clock_mod_index + clock_mod_index, 0, MOD_CHOICE_SIZE - 1);
int getClockMod(bool withCvMod = false) const { return pgm_read_word_near(&CLOCK_MOD[getClockModIndex(withCvMod)]); } }
int getClockModIndex(bool withCvMod = false) const { return withCvMod ? cvmod_clock_mod_index : base_clock_mod_index; }
bool isCvModActive() const { return cv1_dest != CV_DEST_NONE || cv2_dest != CV_DEST_NONE; }
byte getSteps(bool withCvMod = false) const { return withCvMod ? pattern.GetSteps() : base_euc_steps; } int getClockModWithMod(int cv1_val, int cv2_val) {
byte getHits(bool withCvMod = false) const { return withCvMod ? pattern.GetHits() : base_euc_hits; } int clock_mod = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -(MOD_CHOICE_SIZE / 2), MOD_CHOICE_SIZE / 2);
return pgm_read_word_near(&CLOCK_MOD[getClockModIndexWithMod(cv1_val, cv2_val)]);
}
int getProbabilityWithMod(int cv1_val, int cv2_val) {
int prob_mod = _calculateMod(CV_DEST_PROB, cv1_val, cv2_val, -50, 50);
return constrain(base_probability + prob_mod, 0, 100);
}
int getDutyCycleWithMod(int cv1_val, int cv2_val) {
int duty_mod = _calculateMod(CV_DEST_DUTY, cv1_val, cv2_val, -50, 50);
return constrain(base_duty_cycle + duty_mod, 1, 99);
}
int getOffsetWithMod(int cv1_val, int cv2_val) {
int offset_mod = _calculateMod(CV_DEST_OFFSET, cv1_val, cv2_val, -50, 50);
return constrain(base_offset + offset_mod, 0, 99);
}
int getSwingWithMod(int cv1_val, int cv2_val) {
int swing_mod = _calculateMod(CV_DEST_SWING, cv1_val, cv2_val, -25, 25);
return constrain(base_swing + swing_mod, 50, 95);
}
byte getStepsWithMod(int cv1_val, int cv2_val) {
int step_mod = _calculateMod(CV_DEST_EUC_STEPS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN);
return constrain(pattern.GetSteps() + step_mod, 1, MAX_PATTERN_LEN);
}
byte getHitsWithMod(int cv1_val, int cv2_val) {
// The number of hits is dependent on the modulated number of steps.
byte modulated_steps = getStepsWithMod(cv1_val, cv2_val);
int hit_mod = _calculateMod(CV_DEST_EUC_HITS, cv1_val, cv2_val, 0, modulated_steps);
return constrain(pattern.GetHits() + hit_mod, 1, modulated_steps);
}
void toggleMute() { mute = !mute; } void toggleMute() { mute = !mute; }
@ -176,6 +190,13 @@ class Channel {
return; return;
} }
if (isCvModActive()) _recalculatePulses();
int cv1 = gravity.cv1.Read();
int cv2 = gravity.cv2.Read();
int cvmod_clock_mod_index = getClockModIndexWithMod(cv1, cv2);
int cvmod_probability = getProbabilityWithMod(cv1, cv2);
const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[cvmod_clock_mod_index]); const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[cvmod_clock_mod_index]);
// Conditionally apply swing on down beats. // Conditionally apply swing on down beats.
@ -211,56 +232,6 @@ class Channel {
output.Low(); output.Low();
} }
} }
/**
* @brief Calculate and store cv modded values using bipolar mapping.
* Default to base value if not the current CV destination.
*
* @param cv1_val analog input reading for cv1
* @param cv2_val analog input reading for cv2
*
*/
void applyCvMod(int cv1_val, int cv2_val) {
// Note: This is optimized for cpu performance. This method is called
// from the main loop and stores the cv mod values. This reduces CPU
// cycles inside the internal clock interrupt, which is preferrable.
// However, if RAM usage grows too much, we have an opportunity to
// refactor this to store just the CV read values, and calculate the
// cv mod value per channel inside the getter methods by passing cv
// values. This would reduce RAM usage, but would introduce a
// significant CPU cost, which may have undesirable performance issues.
if (!isCvModActive()) {
cvmod_clock_mod_index = base_clock_mod_index;
cvmod_probability = base_clock_mod_index;
cvmod_duty_cycle = base_clock_mod_index;
cvmod_offset = base_clock_mod_index;
cvmod_swing = base_clock_mod_index;
return;
}
int dest_mod = _calculateMod(CV_DEST_MOD, cv1_val, cv2_val, -(MOD_CHOICE_SIZE / 2), MOD_CHOICE_SIZE / 2);
cvmod_clock_mod_index = constrain(base_clock_mod_index + dest_mod, 0, MOD_CHOICE_SIZE - 1);
int prob_mod = _calculateMod(CV_DEST_PROB, cv1_val, cv2_val, -50, 50);
cvmod_probability = constrain(base_probability + prob_mod, 0, 100);
int duty_mod = _calculateMod(CV_DEST_DUTY, cv1_val, cv2_val, -50, 50);
cvmod_duty_cycle = constrain(base_duty_cycle + duty_mod, 1, 99);
int offset_mod = _calculateMod(CV_DEST_OFFSET, cv1_val, cv2_val, -50, 50);
cvmod_offset = constrain(base_offset + offset_mod, 0, 99);
int swing_mod = _calculateMod(CV_DEST_SWING, cv1_val, cv2_val, -25, 25);
cvmod_swing = constrain(base_swing + swing_mod, 50, 95);
int step_mod = _calculateMod(CV_DEST_EUC_STEPS, cv1_val, cv2_val, 0, MAX_PATTERN_LEN);
pattern.SetSteps(base_euc_steps + step_mod);
int hit_mod = _calculateMod(CV_DEST_EUC_HITS, cv1_val, cv2_val, 0, pattern.GetSteps());
pattern.SetHits(base_euc_hits + hit_mod);
// After all cvmod values are updated, recalculate clock pulse modifiers.
_recalculatePulses();
}
private: private:
int _calculateMod(CvDestination dest, int cv1_val, int cv2_val, int min_range, int max_range) { int _calculateMod(CvDestination dest, int cv1_val, int cv2_val, int min_range, int max_range) {
@ -270,13 +241,19 @@ class Channel {
} }
void _recalculatePulses() { void _recalculatePulses() {
const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[cvmod_clock_mod_index]); int cv1 = gravity.cv1.Read();
_duty_pulses = max((long)((mod_pulses * (100L - cvmod_duty_cycle)) / 100L), 1L); int cv2 = gravity.cv2.Read();
_offset_pulses = (long)((mod_pulses * (100L - cvmod_offset)) / 100L); int clock_mod_index = getClockModIndexWithMod(cv1, cv2);
int duty_cycle = getDutyCycleWithMod(cv1, cv2);
int offset = getOffsetWithMod(cv1, cv2);
int swing = getSwingWithMod(cv1, cv2);
const uint16_t mod_pulses = pgm_read_word_near(&CLOCK_MOD_PULSES[clock_mod_index]);
_duty_pulses = max((long)((mod_pulses * (100L - duty_cycle)) / 100L), 1L);
_offset_pulses = (long)((mod_pulses * (100L - offset)) / 100L);
// Calculate the down beat swing amount. // Calculate the down beat swing amount.
if (cvmod_swing > 50) { if (swing > 50) {
int shifted_swing = cvmod_swing - 50; int shifted_swing = swing - 50;
_swing_pulse_amount = (long)((mod_pulses * (100L - shifted_swing)) / 100L); _swing_pulse_amount = (long)((mod_pulses * (100L - shifted_swing)) / 100L);
} else { } else {
_swing_pulse_amount = 0; _swing_pulse_amount = 0;
@ -289,15 +266,6 @@ class Channel {
byte base_duty_cycle; byte base_duty_cycle;
byte base_offset; byte base_offset;
byte base_swing; byte base_swing;
byte base_euc_steps;
byte base_euc_hits;
// Base value with cv mod applied.
byte cvmod_clock_mod_index;
byte cvmod_probability;
byte cvmod_duty_cycle;
byte cvmod_offset;
byte cvmod_swing;
// CV mod configuration // CV mod configuration
CvDestination cv1_dest; CvDestination cv1_dest;

View File

@ -328,10 +328,12 @@ void DisplayChannelPage() {
// When editing a param, just show the base value. When not editing show // When editing a param, just show the base value. When not editing show
// the value with cv mod. // the value with cv mod.
bool withCvMod = !app.editing_param; bool withCvMod = !app.editing_param;
int cv1 = gravity.cv1.Read();
int cv2 = gravity.cv2.Read();
switch (app.selected_param) { switch (app.selected_param) {
case PARAM_CH_MOD: { case PARAM_CH_MOD: {
int mod_value = ch.getClockMod(withCvMod); int mod_value = withCvMod ? ch.getClockModWithMod(cv1, cv2): ch.getClockMod();
if (mod_value > 1) { if (mod_value > 1) {
mainText = F("/"); mainText = F("/");
mainText += String(mod_value); mainText += String(mod_value);
@ -344,30 +346,30 @@ void DisplayChannelPage() {
break; break;
} }
case PARAM_CH_PROB: case PARAM_CH_PROB:
mainText = String(ch.getProbability(withCvMod)) + F("%"); mainText = String(withCvMod ? ch.getProbabilityWithMod(cv1, cv2) : ch.getProbability()) + F("%");
subText = F("HIT CHANCE"); subText = F("HIT CHANCE");
break; break;
case PARAM_CH_DUTY: case PARAM_CH_DUTY:
mainText = String(ch.getDutyCycle(withCvMod)) + F("%"); mainText = String(withCvMod ? ch.getDutyCycleWithMod(cv1, cv2) : ch.getDutyCycle()) + F("%");
subText = F("PULSE WIDTH"); subText = F("PULSE WIDTH");
break; break;
case PARAM_CH_OFFSET: case PARAM_CH_OFFSET:
mainText = String(ch.getOffset(withCvMod)) + F("%"); mainText = String(withCvMod ? ch.getOffsetWithMod(cv1, cv2) : ch.getOffset()) + F("%");
subText = F("SHIFT HIT"); subText = F("SHIFT HIT");
break; break;
case PARAM_CH_SWING: case PARAM_CH_SWING:
ch.getSwing() == 50 ch.getSwing() == 50
? mainText = F("OFF") ? mainText = F("OFF")
: mainText = String(ch.getSwing(withCvMod)) + F("%"); : mainText = String(withCvMod ? ch.getSwingWithMod(cv1, cv2) : ch.getSwing()) + F("%");
subText = "DOWN BEAT"; subText = "DOWN BEAT";
swingDivisionMark(); swingDivisionMark();
break; break;
case PARAM_CH_EUC_STEPS: case PARAM_CH_EUC_STEPS:
mainText = String(ch.getSteps(withCvMod)); mainText = String(withCvMod ? ch.getStepsWithMod(cv1, cv2) : ch.getSteps());
subText = "EUCLID STEPS"; subText = "EUCLID STEPS";
break; break;
case PARAM_CH_EUC_HITS: case PARAM_CH_EUC_HITS:
mainText = String(ch.getHits(withCvMod)); mainText = String(withCvMod ? ch.getHitsWithMod(cv1, cv2) : ch.getHits());
subText = "EUCLID HITS"; subText = "EUCLID HITS";
break; break;
case PARAM_CH_CV1_DEST: case PARAM_CH_CV1_DEST:

View File

@ -148,13 +148,13 @@ void StateManager::_saveState(const AppState& app, byte slot_index) {
for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) { for (int i = 0; i < Gravity::OUTPUT_COUNT; i++) {
const auto& ch = app.channel[i]; const auto& ch = app.channel[i];
auto& save_ch = save_data.channel_data[i]; auto& save_ch = save_data.channel_data[i];
save_ch.base_clock_mod_index = ch.getClockModIndex(false); save_ch.base_clock_mod_index = ch.getClockModIndex();
save_ch.base_probability = ch.getProbability(false); save_ch.base_probability = ch.getProbability();
save_ch.base_duty_cycle = ch.getDutyCycle(false); save_ch.base_duty_cycle = ch.getDutyCycle();
save_ch.base_offset = ch.getOffset(false); save_ch.base_offset = ch.getOffset();
save_ch.base_swing = ch.getSwing(false); save_ch.base_swing = ch.getSwing();
save_ch.base_euc_steps = ch.getSteps(false); save_ch.base_euc_steps = ch.getSteps();
save_ch.base_euc_hits = ch.getHits(false); save_ch.base_euc_hits = ch.getHits();
save_ch.cv1_dest = static_cast<byte>(ch.getCv1Dest()); save_ch.cv1_dest = static_cast<byte>(ch.getCv1Dest());
save_ch.cv2_dest = static_cast<byte>(ch.getCv2Dest()); save_ch.cv2_dest = static_cast<byte>(ch.getCv2Dest());
} }