Files
AciduinoCV/AcidStepSequencer.ino

279 lines
8.1 KiB
C++

// Acid StepSequencer, a Roland TB303 step sequencer engine clone
// author: midilab contact@midilab.co
// under MIT license
#include "uClock.h"
#define NOTE_STACK_SIZE 3
// MIDI clock, start, stop, note on and note off byte definitions - based on MIDI 1.0 Standards.
#define MIDI_CLOCK 0xF8
#define MIDI_START 0xFA
#define MIDI_STOP 0xFC
#define NOTE_ON 0x90
#define NOTE_OFF 0x80
#define MIDI_CC 0xB0
// sequencer data
typedef struct
{
uint8_t note;
int16_t length;
} STACK_NOTE_DATA;
typedef struct
{
uint8_t note:7;
uint8_t accent:1;
uint8_t glide:1;
uint8_t rest:1;
uint8_t tie:1;
uint8_t reserved:5;
} SEQUENCER_STEP_DATA;
// 2 bytes per step
typedef struct
{
SEQUENCER_STEP_DATA step[STEP_MAX_SIZE];
int8_t step_init_point;
uint8_t step_length;
} SEQUENCER_TRACK_DATA;
// 32 bytes per 16 step + 2 bytes config = 34 bytes [STEP_MAX_SIZE=16]
typedef struct
{
SEQUENCER_TRACK_DATA data;
uint8_t step_location;
uint8_t channel;
bool mute;
STACK_NOTE_DATA stack[NOTE_STACK_SIZE];
} SEQUENCER_TRACK;
// main sequencer data is constantly change inside uClock 16PPQN and 96PPQN ISR callbacks, so volatile him!
SEQUENCER_TRACK volatile _sequencer[TRACK_NUMBER];
uint8_t _selected_track = 0;
uint8_t _selected_pattern = 0;
// make sure all above sequencer data are modified atomicly only
// eg. ATOMIC(_sequencer[track]data.step[0].accent = 1); ATOMIC(_sequencer[track].data.step_length = 7);
// shared data to be used for user interface interaction and feedback
bool _playing = false;
uint8_t _harmonize = 0;
uint16_t _step_edit = 0;
uint8_t _last_octave = 3;
uint8_t _last_note = 0;
int8_t _transpose = 0; // zero is centered C
uint8_t _selected_mode = 0;
void sendMidiMessage(uint8_t command, uint8_t byte1, uint8_t byte2, uint8_t channel)
{
// send midi message
command = command | (uint8_t)channel;
Serial.write(command);
Serial.write(byte1);
Serial.write(byte2);
}
// The callback function wich will be called by uClock each Pulse of 16PPQN clock resolution. Each call represents exactly one step.
void ClockOut16PPQN(uint32_t * tick)
{
uint8_t step, next_step;
uint16_t length;
int8_t note;
for ( uint8_t track = 0; track < TRACK_NUMBER; track++ ) {
if ( _sequencer[track].mute == true ) {
continue;
}
length = NOTE_LENGTH;
// get actual step location.
_sequencer[track].step_location = uint32_t(*tick + _sequencer[track].data.step_init_point) % _sequencer[track].data.step_length;
// send note on only if this step are not in rest mode
if ( _sequencer[track].data.step[_sequencer[track].step_location].rest == 0 ) {
// check for slide or tie event ahead of _sequencer[track].step_location
step = _sequencer[track].step_location;
next_step = step;
for ( uint8_t i = 1; i < _sequencer[track].data.step_length; i++ ) {
next_step = ++next_step % _sequencer[track].data.step_length;
if (_sequencer[track].data.step[step].glide == 1 && _sequencer[track].data.step[next_step].rest == 0) {
length = NOTE_LENGTH + 5;
break;
} else if (_sequencer[track].data.step[next_step].tie == 1 && _sequencer[track].data.step[next_step].rest == 1) {
length = NOTE_LENGTH + (i * 6);
} else if ( _sequencer[track].data.step[next_step].rest == 0 || _sequencer[track].data.step[next_step].tie == 0) {
break;
}
}
// find a free note stack to fit in
for ( uint8_t i = 0; i < NOTE_STACK_SIZE; i++ ) {
if ( _sequencer[track].stack[i].length == -1 ) {
if ( _harmonize == 1 ) {
note = harmonizer(_sequencer[track].data.step[_sequencer[track].step_location].note);
} else {
note = _sequencer[track].data.step[_sequencer[track].step_location].note;
}
note += _transpose;
// in case transpose push note away from the lower or higher midi note range barrier do not play it
if ( note < 0 || note > 127 ) {
break;
}
_sequencer[track].stack[i].note = note;
_sequencer[track].stack[i].length = length;
// send note on
sendMidiMessage(NOTE_ON, note, _sequencer[track].data.step[_sequencer[track].step_location].accent ? ACCENT_VELOCITY : NOTE_VELOCITY, _sequencer[track].channel);
sendCVNote(note, track); //add accent here
sendGateOn(track);
break;
}
}
}
}
}
void clearStackNote(int8_t track = -1)
{
if ( track <= -1 ) {
// clear all tracks stack note
for ( uint8_t i = 0; i < TRACK_NUMBER; i++ ) {
// clear and send any note off
for ( uint8_t j = 0; j < NOTE_STACK_SIZE; j++ ) {
ATOMIC(
sendMidiMessage(NOTE_OFF, _sequencer[i].stack[j].note, 0, _sequencer[i].channel);
_sequencer[i].stack[j].length = -1;
sendGateOff(i);
)
}
}
} else {
// clear and send any note off
for ( uint8_t i = 0; i < NOTE_STACK_SIZE; i++ ) {
ATOMIC(
sendMidiMessage(NOTE_OFF, _sequencer[track].stack[i].note, 0, _sequencer[track].channel);
_sequencer[track].stack[i].length = -1;
sendGateOff(track);
)
}
}
}
// The callback function wich will be called by uClock each Pulse of 96PPQN clock resolution.
void ClockOut96PPQN(uint32_t * tick)
{
uint8_t track;
// Send MIDI_CLOCK to external hardware
Serial.write(MIDI_CLOCK);
for ( track = 0; track < TRACK_NUMBER; track++ ) {
// handle note on stack
for ( uint8_t i = 0; i < NOTE_STACK_SIZE; i++ ) {
if ( _sequencer[track].stack[i].length != -1 ) {
--_sequencer[track].stack[i].length;
if ( _sequencer[track].stack[i].length == 0 ) {
sendMidiMessage(NOTE_OFF, _sequencer[track].stack[i].note, 0, _sequencer[track].channel);
_sequencer[track].stack[i].length = -1;
sendGateOff(track);
}
}
}
}
// user feedback about sequence time events
tempoInterface(tick);
}
// The callback function wich will be called when clock starts by using Clock.start() method.
void onClockStart()
{
Serial.write(MIDI_START);
_playing = 1;
}
// The callback function wich will be called when clock stops by using Clock.stop() method.
void onClockStop()
{
Serial.write(MIDI_STOP);
// clear all tracks stack note
clearStackNote();
_playing = 0;
}
void setTrackChannel(uint8_t track, uint8_t channel)
{
--track;
--channel;
ATOMIC(_sequencer[track].channel = channel);
}
void initAcidStepSequencer(uint8_t mode)
{
uint8_t track;
// Initialize serial communication
if ( mode == 0 ) {
// the default MIDI serial speed communication at 31250 bits per second
Serial.begin(31250);
} else if ( mode == 1 ) {
// for usage with a PC with a serial to MIDI bridge
Serial.begin(115200);
}
// Inits the clock
uClock.init();
// Set the callback function for the clock output to send MIDI Sync message.
uClock.setClock96PPQNOutput(ClockOut96PPQN);
// Set the callback function for the step sequencer on 16ppqn
uClock.setClock16PPQNOutput(ClockOut16PPQN);
// Set the callback function for MIDI Start and Stop messages.
uClock.setOnClockStartOutput(onClockStart);
uClock.setOnClockStopOutput(onClockStop);
// Set the clock BPM to 126 BPM
uClock.setTempo(126);
// initing sequencer memory data
for ( track = 0; track < TRACK_NUMBER; track++ ) {
_sequencer[track].channel = track;
_sequencer[track].data.step_init_point = 0;
_sequencer[track].data.step_length = STEP_MAX_SIZE;
_sequencer[track].step_location = 0;
_sequencer[track].mute = false;
// initing note data
for ( uint16_t i = 0; i < STEP_MAX_SIZE; i++ ) {
_sequencer[track].data.step[i].note = 48;
_sequencer[track].data.step[i].accent = 0;
_sequencer[track].data.step[i].glide = 0;
_sequencer[track].data.step[i].tie = 0;
_sequencer[track].data.step[i].rest = 0;
}
// initing note stack data
for ( uint8_t i = 0; i < NOTE_STACK_SIZE; i++ ) {
_sequencer[track].stack[i].note = 0;
_sequencer[track].stack[i].length = -1;
}
}
}